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ABSTRACT

The guided and leaky mode characteristics for planar dielectric structures are relatively

well known, due to its various kind of applications. However, the investigation to the modes

characteristics for a circular rod structure is relatively rare, especially for the leaky modes,

despite the rod structure is very simple and useful.

Accordingly, in the first part of the thesis, we analyze the guided and leaky modes for

a circular dielectric rod in detail. The analysis is carried out in several steps. First, by

considering the field distributions outside the rod, the modes are well defined and classified

based on their physical meanings. The relations for the mode solutions using different

types of special functions and Riemann sheets are figured out. Further, completed forms of

characteristic equations used to solve different modes are presented explicitly. Second, in

order to solve this nonlinear characteristic equation efficiently and accurately, we employ

iterative methods and spent lots of efforts in deriving the initial guess expression in a

simply but efficient form. Through using the asymptotic expansion method and employing

the Lambert W function, we derive the initial guesses around the cutoff frequency, low

frequency limit and high frequency limit for both TM and TE cases. Finally, the numerical

results are presented for the complex transverse propagation constants of proper and two

types of improper modes for both cases. Some of the improper modes have not been shown

in literatures.

Next, we extend the analysis to the circular rod with negative permittivity and per-

meability (double negative material (DNG)). Following the same analysis procedure for

the conventional dielectric circular rod, first, we derive the characteristic equation for the

DNG case and define different types of modes. Second, we expand the characteristic equa-

tion asymptotically and then find the initial guess expression for different types of modes
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around the cutoff, high frequency limit and low frequency limit. Finally, using these initial

guesses we solve the characteristic equation with iterative methods and find the dispersion

curves.

The electromagnetic (EM) material property of simultaneous negative permittivity and

permeability we use for the DNG rod analysis actually can not be found in nature so far.

The method in generating material with DNG property is using metamaterials. In the

second part of the thesis we introduce metamaterials, and discuss our work of realizing

tunable metamaterials in detail. This type of tunable property allows the metamaterial

device to overcome the drawback of fixed and limited bandwidth from the conventional

metamaterials.

We start it from presenting a novel tunable and flexible SRR-based meta-atom capable

of tuning its EM response characteristics over a broad frequency range by simple mechanical

stretching. First, we design and simulate a meta-atom with a liquid metal as the resonator

material. The liquid metal is patterned to be a SRR structure and embedded inside a

highly stretchable silicone elastomer. Due to its liquid nature, the liquid metal-based SRR

could flow in response to an applied strain, and compliant to change from the encasing elas-

tomer as the meta-atom being stretched and twisted. Therefore, through simple mechanical

stretching, the shape of the SRR is changed. Correspondingly, the equivalent capacitance

and inductance of the SRR are adjusted, thus tuning the resonance frequency of the meta-

atom. The shifting trend of the resonance frequency with different stretching orientations

is predicted by a simple circuit mode, and verified from the experiment.

Next, we extend the idea of meta-atom to the meta-skin, which is composed of an

array of meta-atoms. This meta-skin performed as a tunable selective surface with a wide

resonance frequency tuning range when being stretched. Further, due to its flexibility, this

meta-skin can function as a flexible “cloaking” surface in suppressing the scattering from the

dielectric object. As examples, we demonstrate frequency selective responses of multilayer

meta-skins with different stretching ratio in the planar direction. Also, we investigate
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scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free

space.

Benefit from the liquid metal and highly stretchable elastomer, we design and realize

a directivity reconfigurable two-arm spiral antenna. This new device has the ability to

reconfigurate the radiation pattern along the main lobe direction by control the shape of

the antenna, as the radiation pattern becomes sharper, directivity is optimized. Finally,

the directivity, efficiency, and axial ratio with different dome height, operating frequencies

are presented.
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CHAPTER 1. INTRODUCTION

1.1 Reveiw on Electromagnetic Propagation in Circular Rod Structure

Geometrical configurations based on a circular rod are very popular, such as coaxial

lines and cavities; these cylindrical structures maintain a uniform cross section along their

length. However, due to the conductor loss, the metallic based structures are impractical in

the high frequency region. A better option is to use the low loss dielectric waveguide [1]-[3].

One of the well known examples is the optical fiber. In 1966, Kao [4] published a paper on

the theory and practice of optical fiber for communication applications, which heralded the

beginning of a new era in telecommunications. Investigation related to the guide modes has

been well established even earlier than 1966 [5, 6], whereas the leaky modes below the cutoff

frequency have been scarcely investigated. Yet, the leaky wave is useful in the many antenna

applications [7]-[10]. Until 1969, Arnbak [11] found the complex propagation constant below

the cutoff frequency by solving the asymptotic forms of the characteristic equation, thus,

proving the existence of leaky modes in the circular dielectric waveguide. Later on, Sammut

[12] presented the characteristic of the leaky modes graphically for both lossless and lossy

cases. However, these results were obtained based on approximation method, which led to

the results not accurate enough for further applications.

Several decades later, Kim studied the guided and leaky modes supported by the di-

electric circular rod [13, 14], and demonstrated several lower order modes by using the

Davidenko’s complex root finding algorithm. In addition, Kim also defined and explained

the regimes of these modes based on their physical meanings [15]-[18]. To solve the eigen-

value problems more efficiently, the asymptotic formulas have been derived before using the

numerical solvers for planar and circular multilayered structures [19]-[23]. The waveguides

open to air or closed with perfect matching layer (PML) were considered, and Lambert
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W function [24, 25] has been leveraged frequently to simplify the asymptotic expressions.

Solutions to dispersion equations with a complex dielectric permittivity are considered [26]

for microwave transfer in tubular sliding-mode plasma waveguides.

However, through investigating these articles and relevant textbooks [27, 28], we found

that there are still many ambiguous parts left unsolved. First of all, different special func-

tions involved characteristic equations have been employed in different articles [11, 13] or

textbooks [27, 28] to solve these modes. A same solution is achieved using different special

functions for proper (guided) modes. Nevertheless, due to the multiple value issue in the

special functions, confusion and difficulty emerge for improper (leaky) modes. Secondly,

it is also found that types of improper modes have not been demonstrated completely for

both TM and TE cases in the previous works. The ways of obtaining and indexing these

modes are unclear as well [13, 14].

Based on these considerations, in the first part of the thesis we will start the analysis of

proper and improper modes from the perspective of special functions to find the solutions

supported by the circular dielectric waveguide. Accordingly, three kinds of special functions:

Hankel function of the first kind ( H
(1)
m (·) ), Hankel function of the second kind (H

(2)
m (·)),

and modified Bessel function (Km(·)) are analyzed in detail to find the relationship of the

solutions when a designated special function is involved. Then, a set of completed form of

characteristic equations for different cases are explicitly exhibited.

The nonlinear characteristic equation we are interesting with has no closd form solution,

thus we will employ Newton-Raphson method to solve it iteratively. As we know the initial

guess is important for the iterative method, which affects both efficiency of the solving

process and accuracy. In order to derive a simple and accurate initial guess expression,

we employed the asymptotic expansion method [29] to find the initial guess expressions for

proper and improper modes based on the characteristic equations of TM and TE cases.

The initial guess derivation for the hybrid (EH or HE) modes will not be discussed in this

thesis. It is believed that the idea of deriving the initial guesses for both TM and TE cases
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can be further extended to derive the initial guess for the hybrid modes. In this process,

analysis for the modes in dielectric slab [30]-[34] has been referred.

For completeness, initial guess expressions are derived from high and low frequency

limits, and around cutoff frequency respectively. In this process, we leveraged Lambert W

function in some expressions. These complete initial guess expressions provide simple and

efficient way of indexing these modes. Finally, Newton method is employed to determine

the complex propagation constant of both proper and improper modes for TM and TE case.

The numerical results are verified by comparing with Kim’s results [13].

The analysis procedures we mentioned above are not only limited to circular rod made

of double positive (DPS) material, which has simultaneous positive permittivity and per-

meability, but also applicable to double negative (DNG) material, which has simultaneous

negative permittivity and permeability. Following the analysis procedures for the conven-

tional rod, we defined different types of modes for the DNG rod. Then we derived the

completed initial guess expressions of different type modes for the DNG case. These ex-

pressions are not exactly the same as the expression for the DPS case, especially the index

for numbering different order of modes in the initial guess expressions. Finally, the disper-

sion curves for DNG case will be presented, and the difference between DPS and DNG cases

will be discussed in detail.

1.2 Review on Tunable Metamaterials

Flexible electronics have gained considerable attentions because of their potential ap-

plications in artificial skins, flexible displays, wearable sensors, sustainable energy, etc.

Many flexible electronic devices have recently been developed, such as stretchable inte-

grated circuits [35]-[39], microfluidic antennas [40]-[42], three-dimensional energy devices

[43], printed thin film transistors [44]-[47], and biometric pressure sensors [48]. On the

other hand, EM metamaterials have been intensively studied because they possess intrigu-

ing properties unattainable with naturally existing materials, such as negative permittivity
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and permeability [49]-[61]. Split ring resonator (SRR) is a popular building block of many

metamaterial-based resonant devices in the microwave regime [62]-[65]. But, these reso-

nant devices often have a limited bandwidth. If the metamaterial’s response characteristics

can be dynamically tuned, then the usefulness of these resonant devices will be signifi-

cantly extended. To this end, a number of tunable metamaterial technologies have been

demonstrated, based on changing unit cell’s effective circuit parameters [66]-[70], constituent

material properties [71]-[76], or geometries [77]-[82]. Specifically, the circuit tuning method

uses variable capacitors and switches to change individual impedances of unit cells [66]-[70].

Tuning of the constituent materials relies on using phase change materials or liquid crystal

to change properties of materials that make up unit cells [66]-[70].

The micro-electro-mechanical systems and microfluidics based approaches change struc-

tures and locations of unit cells relative to a fixed part of metamaterials [77]-[82]. While

the aforementioned tunable metamaterial technologies have led to significant improvement

toward broadening dynamic tuning ranges of the EM properties of the microwave metamate-

rials, there is still much room to improve. One possible direction is to simplify the frequency

tuning mechanism, while further extending the frequency tuning range of metamaterials.

The other direction is to increase the structural flexibility to make metamaterials not only

tunable but also compliant to any arbitrary surface of the interaction object. Recently,

a switchable metamaterial has been developed, capable of tuning its resonance frequency

by pumping mercury into and out of SRR-shaped microchannels [75]. But, this approach

required a relatively complex microfluidic control system to modify the gap capacitance of

the SRR. We also noted that a tunable liquid metal-based antenna has been formed, by

injecting a liquid metal alloy into a microchannel made of a stretchable elastomer [40]. This

device could be stretched to more than double of its original length, thus obtaining a wide

frequency tuning range.

In this part of the thesis we presented a novel tunable and flexible SRR-based meta-atom

capable of tuning its EM response characteristics over a broad frequency range by simple
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mechanical stretching. The presented meta-atom used a liquid metal as the resonator

material. The liquid metal was patterned to be a SRR structure and embedded inside a

highly stretchable silicone elastomer. Due to its liquid nature, the liquid metal-based SRR

could flow in response to an applied strain, and thus, was not prone to fatigue or cracking.

When the encasing elastomer was stretched and twisted, the SRR was shown sufficiently

compliant to yield the necessary deformation. Therefore, by changing the shape of the SRR

via simple mechanical stretching, the gap distance and thus the gap capacitance of the SRR

could be adjusted, thus tuning the resonance response of the meta-atom.

Further, we designed and fabricated meta-skin composed of meta-atoms array by using

the same fabrication technology. Compared with the single meta-atom, the meta-skin can

perform as a tunable selective surface with a wide frequency tuning range when being

stretched. Also, the meta-skin can be wrapped around a curved dielectric material, due

to its flexibility, and function as “cloaking” surface. The experimental result for frequency

selective surface and “cloaking” effect are demonstrated in Chapter 5.

1.3 Review on Directivity Reconfigurable Antennas

Electronics have been extensively studied because they provide a simple mean of in-

tegrating electronic devices on curved surfaces for various applications, such as wearable

devices, artificial skins, flexible displays, and flexible solar energy harvesters [35, 36, 83, 84,

85, 86].

Among these devices, reconfigurable antennas [87]-[89] have attracted increasing atten-

tions due to the explosive growth of wireless communications, satellite communications,

wireless power transfer, radar, etc, where the radiation pattern reconfigurability of anten-

nas is highly demanded. Several liquid metal based tunable antennas have been reported

based on different tuning mechanisms and designs, including a stretchable dipole antenna

or unbalanced loop antenna [90], an electrically small antenna [91], and an electrochemical

controlled capillary actuated monopole antenna [89]. All of these reconfigurable antennas
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are mainly focused on frequency tuning and exhibit their radiation patterns with relatively

low directivity. It should be noted that directional antennas are challenging to develop

and widely demanded for applications such as wireless communication, remote sensing, and

targeted power transfer. Therefore, antennas capable of reconfiguring directivity are highly

desired to optimize their transmission or receiving power in a specific direction of interest.

Benefit from the fabrication technology, which has been introduced in Chapters 4 and 5,

of embedding liquid metal into a flexible elastomer. In Chapter 6, we report the development

of a directivity reconfigurable two-arm spiral antenna made of all flexible materials. The

original planar antenna can be inflated to form a dome-like shape by blowing high-pressure

air into an air cavity below the antenna with the help of commercial micro-electromechanical

systems (MEMS) based microblowers. The ability to change the shape of the antenna

allows reconfiguring the radiation pattern of the antenna along the main lobe direction or

the inflation direction. Due to the formation of the dome-shaped structure, the radiation

pattern of the antenna becomes sharper, thus optimizing its directivity, while its passing

band still remains in a wide frequency range.

For the metamaterial and devices presented in Chapters 4, 5, and 6, Dr. Peng Liu and

I designed the structures, I performed the EM modeling and simulations, Dr. Peng Liu did

the mechanical simulations and fabrication work, and we did the measurement together.
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CHAPTER 2. ANALYSIS OF GUIDED AND LEAKY MODES IN

CIRCULAR DIELECTRIC WAVEGUIDE

2.1 Formulations

The analysis of the guided and leaky modes in the circular dielectric waveguide is actually

to find the propagation constant in the rod structure. In this section we will in detail analyze

the steps to set up the characteristic equation and solve the equations in different situations.

To begin with, we will first have the the structure setup.

2.1.1 Structure Setup

A uniform circular dielectric waveguide is embedded in an infinite homogeneous medium.

This circular waveguide is infinity long in the z direction with radius a. The structure is

illustrated in Figure 2.1. εri and µri are the relative permeability and permittivity re-

spectively. The second subscript i = 1 represents the region within the rod, and i = 2

represents the region outside the rod. The purpose is to find all the possible modes can be

supported by this structure. To solve this problem, we can start from expressing the axial

field distribution of structure [27].

Ezi = AiCm(kρiρ)

 sin(mϕ)

cos(mϕ)

 e−jkzz (2.1a)

Hzi = BiCm(kρiρ)

 cos(mϕ)

sin(mϕ)

 e−jkzz (2.1b)

where Ai and Bi are the coefficient to be determined. Cm(kρ1ρ) denotes Jm(kρ1ρ) for

i = 1 and Cm(kρ2ρ) denotes H
(2)
m (kρ2ρ) for i = 2, where Jm(·) is the m-th order Bessel
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Figure 2.1 Circular dielectric rod with radius a

function of the first kind, H
(2)
m (·) is Hankel function of the second kind, m and kz are the

azimuthal wave number and axial propagation constant, kρi denotes the transverse complex

propagation constant. It is defined as

kρi =
√
k20µriεri − k2z (2.2)

where i = 1, 2 and k0 is the wave number in free space. Other field components related to

Hz are expressed as [27]

Eρ = −jωµ
k2ρ

1

ρ

∂Hz

∂ϕ
Hρ = −jk

2
z

k2ρ

∂Hz

∂ρ
(2.3a)

Eϕ =
jωµ

k2ρ

∂Hz

∂ρ
Hϕ = −jkz

k2ρ

1

ρ

∂Hz

∂ϕ
(2.3b)

Similarly, field components in other directions related to Ez are expressed as:

Eρ = −jkz
k2ρ

∂Ez
∂ρ

Hρ =
jωε

k2ρ

1

ρ

∂Ez
∂ϕ

(2.4a)

Eϕ = −jkz
k2ρ

1

ρ

∂Ez
∂ϕ

Hϕ = −jωε
k2ρ

∂Ez
∂ρ

(2.4b)
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By substituting Equation (2.1) into Equations (2.3) and (2.4), the field components in ρ

and ϕ directions are expressed as

Eρi = − j

k2ρi

[
AikzkρiC

′
m(kρiρ)∓Bi

mωµi
ρ

Cm(kρiρ)

] sin(mϕ)

cos(mϕ)

 e−jkzz (2.5a)

Eϕi = − j

k2ρi

[
±Ai

kzm

ρ
Cm(kρiρ)−BiωµiC ′m(kρiρ)

] cos(mϕ)

sin(mϕ)

 e−jkzz (2.5b)

Hρi = − j

k2ρi

[
∓Ai

ωmεi
ρ

Cm(kρiρ) +BikzkρiC
′
m(kρiρ)

] cos(mϕ)

sin(mϕ)

 e−jkzz (2.5c)

Hϕi = − j

k2ρi

[
AiωεikρiC

′
m(kρiρ)∓Bi

mkz
ρ

Cm(kρiρ)

] sin(mϕ)

cos(mϕ)

 e−jkzz (2.5d)

In Equation (2.5) i = 1, 2. The ′ stands for the derivative to the special function. After

getting the expressions for all of the field components, we can apply the following boundary

condition for the rod.

Ez1|ρ=a = Ez2|ρ=a, Hz1|ρ=a = Hz2|ρ=a (2.6a)

Eϕ1|ρ=a = Eϕ2|ρ=a, Hϕ1|ρ=a = Hϕ2|ρ=a (2.6b)

By substituting the fields expression into Equation (2.6a) and (2.6b), we will have

A1
mkz
k0a

(
1

k2ρ1
− 1

k2ρ2

)
∓B1

[
µr1J

′
m(kρ1a)

kρ1Jm(kρ1a)
− µr2H

(2)′
m (kρ2a)

kρ2H
(2)
m (kρ2a)

]
= 0 (2.7a)

∓B1
mkz
k0a

(
1

k2ρ1
− 1

k2ρ2

)
+A1

[
εr1J

′
m(kρ1a)

kρ1Jm(kρ1a)
− εr2H

(2)′
m (kρ2a)

kρ2H
(2)
m (kρ2a)

]
= 0 (2.7b)

To have non-trivial solution for A1 and B1, the determinant of the coefficient matrix must

vanish. After simplification and arrangement, the characteristic equation is derived as follow[
µr1J

′
m(kρ1a)

kρ1Jm(kρ1a)
− µr2H

(2)′
m (kρ2a)

kρ2H
(2)
m (kρ2a)

][
εr1J

′
m(kρ1a)

kρ1Jm(kρ1a)
− εr2H

(2)′
m (kρ2a)

kρ2H
(2)
m (kρ2a)

]
=

(
mkz
k0a

)2
(

1

k2ρ1
− 1

k2ρ2

)2

(2.8)
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By solving Equation (2.8), we can obtain all the modes supported by the rod. However, it is

complicated to solve this equation directly. In order to make our discussion more efficiently,

we will not discuss the hybrid modes (HE or EH) here, which is m 6= 0. In stead, we will

focus on TE and TM cases, where m = 0 in Equation (2.8).

2.1.2 Characteristic Equation and Modes Definition

A specific case is considered here by imposing m = 0, which means modes are without

variations along the circular angles. Under this circumstance, Equation (2.8) is split into

two characteristic equations. The one without Hz component represents the TM0n modes,

and the one without Ez component represents TE0n modes, where the first subscript comes

from m = 0, and the second subscript denotes the order of the modes. Mathematically,

the characteristic equations for TE and TM cases are identical by simply reciprocating

material parameters, thus both cases are discussed in this report based on the same form

of characteristic equation. Before further discussion, new variables u and v are introduced

to simplify notation, which are expressed as

u,kρ1a = k0a
√
µr1εr1 − δ2 (2.9a)

v,jkρ2a = k0a
√
δ2 − µr2εr2 (2.9b)

where δ = kz/k0, and r is given by

r =
√
u2 + v2 = k0a

√
µr1εr1 − µr2εr2 (2.10)

Further, by introducing the relationship of H
(2)′
0 (z) = −H(2)

1 (z) and J ′0(z) = −J1(z), the

characteristic equation is rewritten as

κ

u

J1(u)

J0(u)
+

1

jv

H
(2)
1 (−jv)

H
(2)
0 (−jv)

= 0 (2.11)

where κ = εr1/εr2 for TM case and κ = µr1/µr2 for TE case. For non-magnetic dielectric

rod µr1 = µr2 = 1, thus κ = 1. For Equation (2.11), either u, v, or δ can be treated as
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an unknown. It is well known that Hankel function of the second kind has multiple value

property in complex plane, and it is found that Equation (2.11) is an even function of u

and δ. These properties of Equation (2.11) make v as a variable directly a better choice. In

this situation, the square root issue introduced by solving δ or u is directly avoided. Once

v is solved, u and δ are expressed in terms of v explicitly. Equation (2.9b) indicates that

v describes the wave behavior along the radial direction outside the circular dielectric rod.

By substituting v into the leading transverse wave form of the Hankel function, we have

evρ/a = e−Re(v)ρ/ae−jIm(v)ρ/a. It is clear that v is normalized complex transverse attenuation

constant with the imaginary part for propagation constant. Accordingly, Table 2.1 presents

the classification of different types of modes based on v, and these definitions will be used

in the following discussion.

Table 2.1 Classification of different kinds of modes

Proper Modes
Improper Modes

Outging Incoming

sign(Re(v)) (+) (–)

sign(Im(v)) (+,–) (+) (–)

2.1.3 Relationship between Special Functions and Propagation Constants

Besides expressing Equation (2.11) in terms of H
(2)
m (·), the characteristic equation can

be also expressed in terms of Km(·), and H
(1)
m (·) with different arguments

κ

u

J1(u)

J0(u)
+

1

v

K1(v)

K0(v)
= 0 (2.12)

κ

u

J1(u)

J0(u)
− 1

jv

H
(1)
1 (jv)

H
(1)
0 (jv)

= 0 (2.13)

For the proper modes, solutions corresponding to different special functions involved equa-

tions are distributed in the same Riemann sheet. Thus, the characteristic Equations (2.11),

(2.12) and (2.13) give same solutions. However, the improper cases are more complicated

due to the multiple value issue involved. Starting from the relationship between Km(·),
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H
(1)
m (·) and H

(2)
m (·), we have the following relationship by considering Km(·) and H

(1)
m (·) in

different quadrants.

Km(z) = j(π/2)ejmπ/2H(1)
m (z̃1)

− π < arg(z) ≤ π/2
(2.14)

Km(z) = −j(π/2)e−jmπ/2H(2)
m (z̃2)

− π/2 < arg(z) ≤ π
(2.15)

(a) (b)

Figure 2.2 (a) Relationship between Km(·) and H
(1)
m (·) in different quadrants. Negative

real axis is defined as the branch cut for log(z), and arg(z) : (−π, π/2]. (b)

Different types of modes.

where z̃1 = zejπ/2, and z̃2 = ze−jπ/2. In Figure 2.2(a), a, b, c, and d represent third,

fourth, first, and second quadrants respectively. In Figure 2.2(a), when the argument of

Km(z) is defined in location a, b or c, the argument of H
(1)
m (z) will move to location b, c

and d respectively. When the argument of Km(z) is in location d, the argument of H
(1)
m (z)

will across the branch cut and move to the next Riemann sheet. Consequently, Km(·) and

H
(1)
m (·) in different Riemann sheets related as

Km,p−1(z) = j(π/2)ejmπ/2H(1)
m,p(z̃1)

π/2 < arg(z) < π

(2.16)
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where the second subscript p indicates the p-th Riemann sheet. Similarly for Equation

(2.15), when z is in the third quadrant, due to the e−jπ/2 factor, the argument of H
(2)
m (z̃2)

rotates clockwise and then crosses the branch cut, finally reaches the other Riemann sheet.

Then, we have

Km,p+1(z) = −j(π/2)e−jmπ/2H(2)
m,p(z̃2)

− π < arg(z) < −π/2
(2.17)

With these relationships between different special functions, we can qualitatively con-

clude the relationship between the solutions of Equations (2.12), (2.13), and (2.14): for the

proper modes, v is in the first and fourth quadrants. Consequently, all three equations with

different special functions give same solutions

vKnp = vH1
np = vH2

np (2.18)

The superscripts H2, K, and H1 mean the solution from Equations (2.11)-(2.13) respec-

tively. The subscript stands for the n-th modes in p-th Riemann sheet. For the outgoing

improper mode, as shown in Figure 2.2(b), v is in the second quadrant.

vKnp = vH1

n(p+1) = vH2
np (2.19)

Similarly, for the incoming improper mode, we have

vKn(p+1) = vH1

n(p+1) = vH2
np (2.20)

Equation (2.18) shows that all the proper modes are the same for a given Riemann

sheet. Thus, they can be easily solved by using principal form from Equations (2.11),

(2.12), and (2.13). However, for the improper mode, when H
(1)
m (·) and Km(·) are selected,

corresponding solution distributed in the second or third quadrant will move to the next

Riemann sheet. This requires us to convert the formation of the special function according

to the different Riemann sheets it finally reaches. For Equation (2.19), the relationship

between H
(1)
m (·) in its principal value and its p-th Riemann sheet is expressed as [24]:

H(1)
m,p(z) = (1− 2p)H(1)p.v.

m (z)− 2pH(2)p.v.
m (z) (2.21)
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where the p.v. in the superscript represents the special function is evaluated in the principal

value, and in this case p = 0. The characteristic equation for improper modes in the second

quadrant can be rewritten as

κ

u

J1(u)

J0(u)
+

1

jv

H
(1)
1 (−jv) + 2H

(2)
1 (−jv)

H
(1)
0 (−jv) + 2H

(2)
0 (−jv)

= 0 (2.22)

Following the same steps, the relationship between Km(·) in its p-th Riemann sheet and its

principal formation is given as [24]:

Km,p(z) = Kp.v.
m (z) + j2π(−1)m+1Im(z) (2.23)

where Im(·) is m-th order modified Bessel function of the first kind. By employing Equation

(2.23), the characteristic equation for the improper modes in the third quadrant with Km(·)

involved is rewritten as

κ

u

J1(u)

J0(u)
+

1

v

K1(v) + j2πI1(v)

K0(v)− j2πI0(v)
= 0 (2.24)

Finally, we can conclude that Equations (2.11), (2.12), and (2.22) can be used to solve the

improper modes in the second quadrant. Equations (2.11), (2.22), and (2.24) can be used

to solve the improper modes in the third quadrant [92].

2.1.4 Complex Conjugate Properties for Lossless Rod

To make this study more complete, the properties related to the relationship of solu-

tion and their corresponding complex conjugate are presented. These conclusions, on one

hand, give a better understanding of this work; on the other hand, it helps us avoid some

unnecessary trouble through the numerical implementation. From the complex conjugate

relationship of special functions in their principal values, we have the general complex con-

jugate relationships for special functions in different Riemann sheets as

Kmp(z
∗) = K∗m(−p)(z) (2.25)

H(1)
mp(z

∗) = H
(2)∗
m(−p)(z) (2.26)

H(2)
mp(z

∗) = H
(1)∗
m(−p)(z) (2.27)
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Equations (2.25)-(2.27) indicate that, for the principal value, namely p = 0, [vKn ]∗, [vH1
n ]∗,

and [vH2
n ]∗ are the solutions as well for the lossless dielectric rod. For the p-th Riemann

sheet, we have [vKnp]
∗ = vKn(−p), [vH1

np ]∗ = vH2

n(−p), and [vH2
np ]∗ = vH1

n(−p) correspondingly. From

the above analysis, the relationship of the complex conjugate solutions corresponding to

different types of modes can be concluded as

[vKnp]
∗ = [vH1

np ]∗ = [vH2
np ]∗ = vKn(−p) = vH2

n(−p) = vH1

n(−p) (2.28)

for the proper modes in the first and fourth quadrants, and

[vKnp]
∗ = [vH1

n(p+1)]
∗ = [vH2

np ]∗ = vKn(−p) = vH2

n(−p−1) = vH1

n(−p) (2.29)

for the improper modes in the second quadrant, and

[vKn(p+1)]
∗ = [vH1

n(p+1)]
∗ = [vH2

np ]∗ = vKn(−p−1) = vH2

n(−p−1) = vH1

n(−p) (2.30)

for the improper modes in the second quadrant. Due to the relationship in the modes solved

using different special functions, the following sections will focus on the results solved based

on H
(2)
m (·) as shown in Equation (2.11).

2.2 Initial Guesses

Among several iterative methods, due to the advantages of easy implementation, con-

verging fast, and requiring only one initial guess, Newton-Raphson method [95] is employed

to solve Equation (2.11) numerically. Appropriate initial guess is crucial in finding right

solutions with less number of iterations. In this section the initial guesses are derived using

the asymptotic form on the p = 0 Riemann sheet. By considering the behavior of u and v in

different regions, Equation (2.11) is expanded around cutoff frequency, high frequency limit

as well as the low frequency limit. From numerical solutions, it is found that from neither

of the perspectives mentioned above we can solve three types of modes completely, due

to the different types of modes distribute in different regions. Especially for the incoming

improper modes, which is further categorized as incoming improper modes stop at cutoff
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frequency and the ones stop at DC. In this asymptotic expansion process, we will introduce

the Lambert W function [24, 25] with different branches to find accurate and simple forms

of initial guesses for both TM and TE cases.

2.2.1 Around the Cutoff Frequency

In the circular dielectric rod, TM0n and TE0n modes share the same cut-off frequency.

This can be derived by imposing v = 0, which leads to J0(u = χ0n) = 0, where χ0n

denotes the n-th root of zero order Bessel function of the first kind. Consequently, we have

r ≈ χ0n, 0 ≈ v � r, and u ≈ r− v2/(2r) around the cut-off frequency, with small argument

expansion, the inverse of the Hankel function term in Equation (2.11) is approximated as

− jvH
(2)
0 (−jv)

H
(2)
1 (−jv)

≈ v2 ln(veγ/2) (2.31)

where γ ≈ 0.577215664 is the Euler constant. Similarly, the inverse of Bessel function term

in Equation (2.11) is expanded around r as

u

κ

J0(u)

J1(u)
= c(r) + v2b(r)/2 (2.32)

where

c(r) =
r

κ

J0(r)

J1(r)
(2.33)

b(r) =
1

2κ

[
1− J0(r)

J1(r)

(
1

r
− J ′1(r)

J1(r)

)]
(2.34)

By combining Equations (2.31)-(2.32) together, and only keeping the leading term of c(r)

and b(r), which are defined as

b1 =
1

2κ
(2.35)

c1(r) = −χ0n(r − χ0n)

κ
(2.36)

Equation (2.11) is simplified as

v2 ln(v2a21/4) = 2c1(r) (2.37)
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with a1 = eγ−1/2κ. The solution corresponding to Equation (2.37) is represented by Lambert

W function [24, 25] as

v = 2a−11 e
1
2
Wp(z(r)) (2.38)

where the subscript p represents different branches of W (z) and z(r) = a21c1/2. The prin-

cipal, -1 and +1 branches of Lambert W function with complex input are demonstrated in

Figures 2.3, 2.4 and 2.5 respectively. Sommerfeld derived a form similar to Equation (2.37)

for waves over lossy wires [93] (p.183) using asymptotic representation of Bessel functions,

but (2.37) keeps more terms as shown in Equation (2.32) by expanding the Bessel functions

around the cut-off. Sommefelds solution is in a form corrected step by step in the subse-

quent approximations [93] (p.183), not the closed form solutions as shown in (2.38) using

Lambert W functions. The initial guess expression in Equation (2.38) can predict different

type of modes with appropriate branches of Lambert W function, which are summarized as

(a) (b)

Figure 2.3 Lambert W function for principal branch p = 0. (a) Real part. (b) Imaginary

part.
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(a) (b)

Figure 2.4 Lambert W funciton for branch p = −1. (a) Real part. (b) Imaginary part.

(a) (b)

Figure 2.5 Lambert W funciton for branch p = +1. (a) Real part. (b) Imaginary part.

The initial guesses in Equation (2.38) are asymptotically expanded in different orders

to approximate the true solutions for the proper and improper modes, which are solved

numerically using the initial guesses in Equation (2.38). These approximate initial guesses

are close to the true solution, as shown in Figure 2.6. However, the difference between initial

guesses and true solution is relative large, if all the terms are kept in Equations (2.33) and
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Table 2.2 Corresponding branches to derive different types of modes

Proper Modes
Improper Modes

Outging Incoming

p value -1 1

sign(r − χ0n) (+) (–) (+)

sign(z) (–) (+) (–)

(2.34), refer to most terms in Figure 2.6. In this situation, Equations (2.31) and (2.32) can

be un-symmetric through the expansion. Similarly, if we neglect the v2 term in Equation

(2.32), the initial guesses still have a relative large difference with the true solutions, refer

to the least terms in Figure 2.6. From the numerical results, we found that the best way

to derive the initial guess around cutoff frequency region is keeping the leading terms in

Equation (2.33) and (2.34), referring to the best terms in Figure 2.6. In this manner, the

initial guesses are accurate, and the efficiency in deriving these initial guesses is improved

[94].

(a) (b)

Figure 2.6 With κ = 4, the initial guess are compared with the numerical solutions around

the first cut-off frequency. The most terms, and best terms in the legend refer

that b(r), and c(r) are kept with all the terms, and leading terms in Equations

(2.33) and (2.34) respectively. The least terms refers that b(r) is with leading

term in Equation (2.34), and c(r) = 0.
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2.2.2 High Frequency Limit

2.2.2.1 Case with |v| � |u| � 1

In the high frequency region (r � 1), both u, and v are large, namely v � 1 and

u� 1. Also, in this region δ = kz/k0 approaches
√
εr1µr1, which makes u� v, Under this

circumstance Jm(·) and H
(2)
m (·) are expanded with large argument [24, 29] by considering

the argument in different regions, when | arg(z)| < π, Bessel function of the first kind and

Hankel function of the second kind are expanded as [24]

Jm(z) ∼
√

2

πz
cos(z − mπ

2
− π

4
) (2.39)

and

H(2)
m (z) ∼

√
2

πz
e−j(z−

mπ
2
−π

4
) (2.40)

For the case m = 0, and m = 1, we have J1(u)/J0(u) ≈ −u/(vκ) ≈ 0 from Equation

(2.11), namely J1(u) ≈ 0. From the asymptotic form in Equation (2.39) we can further

derive sin(u − π/4) ≈ 0. Consequently, a very simple form in predicting variable u at

high frequency range is expressed as u0 = π/4 + mπ, where m = 1, 2, 3.... More generally,

Equation (2.11) is written as

tan
(
u− π

4

)
= −1

κ

u

v
(2.41)

For the proper modes, the primary form of v0 can be derived from Equation (2.9b)

as v0 =
√
r2 − u20 , by substituting this v0 expression into Equation (2.41), a set of more

accurate initial guess expressions for proper modes are obtained as

u1 =
π

4
+mπ − tan−1

(
1

κ

u0√
r2 − u20

)
(2.42a)

v1 =
√
r2 − u21, m = 1, 2, 3... (2.42b)

For the improper modes in the third quadrant, the primary form of v0 is written as

v0 = −
√
r2 − u20. Following the same steps, more accurate initial guesss expressions for
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incoming improper are written as

u1 =
π

4
+mπ + tan−1

(
1

κ

u0√
r2 − u20

)
(2.43a)

v1 = −
√
r2 − u21, m = 1, 2, 3... (2.43b)

2.2.2.2 Case with |u| � |v| � 1

Equation (2.43) can be used to predict incoming improper modes for TM and TE cases

for the high frequency limit. Another type of solution at the high frequency is |u| � |v| � 1.

Through the numerical test, it is found that the value of u and v fluctuate around a constant

value from the high frequency region to the low frequency limit for the TE modes. In the

other word, Equation (2.43) no longer works for this special case when κ is close to one, and

we observed that for these special cases, the argument z = −jv is in the second quadrant

and close to the negative real axis with condition of |u| � |v| � 1. Under this circumstance,

H
(2)
m (·) is re-expanded. This process can be started from expanding Jm(·) with arg(z)≈π,

by using

Jm(z) = (−1)mJm(−z) (2.44)

Accordingly, Jm(·) can be expanded as

Jm(z) ∼ (−1)m
√
−2

πz
cos(z +

mπ

2
+
π

4
) (2.45)

Now, let us derive the asymptotic expression of the Hankel function for the argument

z in the second quadrant above the negative real axis and close to π. We know that

H
(2)
m (z) = Jm(z) − jYm(z) , where Ym(z) is the Bessel function of the second kind. The

phase angle of z is close to π, thus Jm(−z) and H
(2)
m (−z) can be well approximated according

to Equations (2.39) and (2.40). To express H
(2)
m (z) in terms of Jm(−z), and H

(2)
m (−z), we

can use

Ym(zejmπ) = e−jnmπYm(z) + 2j sin(nmπ) cot(mπ)Jm(z) (2.46)

where m is the order of special function, and n is an integer. For n = −1, ze−jπ = −z is in

the fourth quadrant near the positive real axis, the rotation from z to -z does not cross the
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branch cut. Equation (2.46) can be further simplified as

Ym(z) = (−1)m [Ym(−z) + 2jJm(−z)] (2.47)

By substituting Jm(z) = (−1)mJm(−z), and having Equation (2.47) into the H
(2)
m (z) ex-

pression, we have

H(2)
m (z) = (−1)m

[
H(2)
m (−z) + 2Jm(−z)

]
(2.48)

Further, substituting Equations (2.40) and (2.45) into Equation (2.48), we finally reach

H
(2)
0 (z) ∼

√
−2

πz

[
ej(z+π/4) + 2 cos(z + π/4)

]
(2.49a)

H
(2)
1 (z) ∼

√
−2

πz

[
−jej(z+π/4) + 2 sin(z + π/4)

]
(2.49b)

Accordingly, the second term of Equation (2.11) is written as

1

jv

H
(2)
1 (−jv)

H
(2)
0 (−jv)

=
1

jv

3 tan(−jv + π/4)− j
3 + j tan(−jv + π/4)

(2.50)

Further, Equation (2.11) is reformed as

vκ

u

J1(u)

J0(u)
=

3 tanh(v + jπ/4) + 1

3 + tanh(v + jπ/4)
(2.51)

Finally, we have

tanh(v + jπ/4) = −1− 3a(v)

3− a(v)
(2.52)

where a(v) = κ
v

u

J1(u)

J0(u)
. Thus, the primary form of initial guess of incoming improper modes

is evaluated as

v0 = − tanh−1(1/3) + j(m− 1/4)π, m = −1,−2,−3, ... (2.53)

and a more accurate form for v is expressed as

v1 = − tanh−1
(

1− 3a(v0)

3− a(v0)

)
+ j(m− 1/4)π (2.54)



www.manaraa.com

23

2.2.3 Low Frequency Limit

2.2.3.1 TM Case with κ 6= 1

At low frequency range ( r � 1), due to the solution for two types of improper modes

locate in different regions, the corresponding special functions are expanded in different

ways. At DC limit, right hand side of Equation (2.10) approaches zero, namely u2 +v2 = 0,

we have u ≈ −jv, and v ≈ ju . For the improper modes in the second quadrant, v is in

the second quadrant and close to the positive imaginary axis, thus u ≈ −jv is in the first

quadrant and close to the positive real axis. This indicates that Equation (2.41) still can be

employed to derive the initial guesses for the outgoing improper modes. According to the

previous discussion, the primary forms of initial guesses for the outgoing improper modes

are expressed as

u0 = π/4 +mπ + j tanh−1(1/κ), m = 0, 1, 2, ... (2.55a)

v0 = −
√
r2 − u20 ≈ j(π/4 +mπ)− tanh−1(1/κ) (2.55b)

However, for the incoming improper modes stop at DC limit, the variable v is around

the negative imaginary axis, therefore u ≈ −jv is in the second quadrant and close to the

negative real axis. In this situation, both H
(2)
m (−jv), and Jm(u) have to be expanded around

negative real axis, which are shown in Equations (2.45) and (2.48). Correspondingly, we

have

J1(u)

J0(u)
∼ tan(u+ π/4) (2.56a)

H
(2)
1 (u)

H
(2)
0 (u)

∼ 3 tan(u+ π/4)− j
3 + j tan(u+ π/4)

(2.56b)

Equation (2.11) is in a new asymptotic form

tan(u+ π/4) =
ju

v

1

κ

3 tan(u+ π/4)− j
3 + j tan(u+ π/4)

(2.57)

For κ 6= 1, it can be further reduced to

tan(u+ π/4) =
1

κ

3 tan(u+ π/4)− j
3 + j tan(u+ π/4)

(2.58)
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In this quadratic equation tan(u+π/4) is treated as variable. After neglecting one solution

which contradicts the assumption, we have

tan(u+ π/4) = jκ̃ (2.59)

where

κ̃ =
3(κ− 1) +

√
9(κ− 1)2 + 4κ

2κ
. (2.60)

Therefore, the initial guesses for the incoming improper modes stop at DC limit is expressed

as

u0 = π/4 +mπ + j tanh−1(1/κ̃), m = −1,−2,−3, ... (2.61a)

v0 = −
√
r2 − u20 ≈ j(π/4 +mπ)− tanh−1(1/κ̃) (2.61b)

2.2.3.2 TE Case with κ = 1

The Equations (2.55) and (2.61) we have derived are only applicable for κ 6= 1, like the

TM case. To generate the expressions for TE case with κ = 1, we first exam the value of u

at DC limit and find that u has a large value for the imaginary part. As matter of fact, we

assume u is in the form of

u = π/4 +mπ + juI , m = 0, 1, 2, ... (2.62)

where the subscript I represents the imaginary part of u. By substituting it into Equation

(2.62) into Equation (2.41) with κ = 1 yields

tanhuI ≈ uI/
√
r2 + u2I (2.63)

Further Equation (2.63) is written as

(r2 + u2I)(1− e−2uI )2 = u2I(1 + e−2uI )2 (2.64)

After neglecting the higher order terms, we have

4u2Ie
−2uI ≈ r2 (2.65)
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The solution to Equation (2.65) is

uI = −W−1(−r/2) (2.66)

Similarly, for the incoming improper modes stop at DC limit. We still assume u in Equation

(2.57) has the same form of Equation (2.62) but with m = −1,−2,−3, .... Following the

same procedure, we have

cothuI ≈
uI√
r2 + u2I

3 cothuI − 1

3− cothuI
(2.67)

uI is approximated as in Equation (2.66) as well. Consequently, the initial guesses of

outgoing improper modes and incoming improper modes stop at DC limit for TE case are

expressed as

u0 = π/4 +mπ − jW−1(−r/2) (2.68a)

v0 = −
√
r2 − u20 ≈ j(π/4 +mπ) +W−1(−r/2) (2.68b)

2.3 Numerical Results and Discussions

The guided and leaky modes of circular waveguide are solved numerically using the initial

guesses derived from last section around the cut-off frequency and the high or low frequency

limits. The solutions using the second kind of Hankel function on the principal plane are

presented in this section. Using the relationship from last section, the solutions using

other special functions or in different Riemann sheets can be found. For most examples,

normalized complex transverse attenuation constant v is shown because it defines different

mode properties as listed in Table 2.1. Several low order proper and outgoing improper

modes are shown in Figure 2.7. For the proper modes, there is no propagation in the

transverse direction, and it has positive attenuation constant above the cutoff frequency,

which is exhibited in Figure 2.7(a). For the convenience of visualization the attenuation

constant v for the proper modes are normalized with k0a. These curves are generated either
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from the cutoff frequency using initial guesses according to section 2.2.1, or from the high

frequency limit in Equation (2.42). Also from the analysis in the high frequency limit,

the asymptotic value for the upper bound is
√
µr1εr1 − µr2εr2. As the operating frequency

decreases to the cutoff frequency, the proper modes will vanish, and finally convert into

the outgoing improper modes. This set of outgoing improper modes can be generated from

using the initial guesses derived in section 2.2.1, or using the initial guesses from the low

frequency limit with Equation (2.55). Further, they are well indexed from low order to

high order according the integer m in Equation (2.55). Some discussions of the physical

meaning on the outgoing improper modes have been presented by Kim in [14]. Compared

to the outgoing improper modes, the incoming improper modes presented in Figure 2.8

have the opposite sign for the attenuation constants. The magnitude for these two types

of improper modes is increasing in the direction away from the waveguide, but propagating

in the opposite directions transversely. This set of incoming improper modes which stop

at cut off frequency can be predicted by using the initial guesses in Equation (2.38) with

p = 1 around the each cutoff frequency, or by using the initial guesses in Equation (2.43)

at high frequency limit. From the high frequency limit, the asymptotic lower bound is

−
√
µr1εr1 − µr2εr2 .

However, for κ = 4 , except the first three low order modes, the index in Equation (2.55)

is not in a one-to-one relationship with the order of modes stop at the cutoff frequency. For

instance, the incoming improper modes stop at the fourth cutoff frequency is indexed with

m = 7 from Equation (2.43). The reason is that Equation (2.43) not only generates the

set of incoming improper modes end up at the cutoff frequency but also another type of

incoming modes stopping at DC, which have not been presented before. For this type of

incoming improper modes stop at DC, they can be predicted from the DC limit by using

Equation (2.61), or by using Equation (2.43) as we mentioned before.
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(a)

(b)

Figure 2.7 Complex transverse attenuation constants for several low orders proper and

outgoing improper modes with κ = 4. (a) Real parts. (b) Imaginary parts.

The Improper2 in the legend represents the outgoing improper modes in the

second quadrant.
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(a)

(b)

Figure 2.8 Complex transverse attenuation constants for the low order incoming improper

mode stop at cutoff frequency with κ = 4. (a) Real parts. (b) Imaginary parts.

The Improper3c in the legend represents the incoming improper in the third

quadrant stops at the cutoff frequency.
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It is observed from Figure 2.9 that the imaginary part of v is much larger than the real

part for the incoming improper modes at DC. This is similar for the outgoing improper

modes shown in Figure 2.7, which implies that the imaginary part is dominant in deriving

the initial guesses at DC limit for both the incoming improper modes as well as the outgoing

improper modes. The corresponding values are Im(v) = π/4 + mπ for the outgoing case

with m = 0, 1, 2 . . . and m = −1,−2,−3 . . . for the incoming case. As the absolute value

of the index m increases, the initial guess will be more accurate compared to the true

value. In contrast, the real part of v is close to a relative small constant at DC limit for

both the outgoing and incoming cases. According to Equations (2.55b) and (2.61b), with

κ = 4, the real parts are very close to − tan−1(1/κ)≈ − 0.2554, and − tanh−1(1/κ̃)≈ −

0.4531 respectively. These values are well matched with the numerical results shown in

Figure 2.7(a) and Figure 2.9(a) at DC limit. The proper modes exhibited here are the

physical modes, which form a complete set and can generally describe an arbitrary field

[96]. Correspondingly, the incoming improper modes are nonphysical modes [96], the wave

propagates and decays in region 1, and has an exponential growth in the transverse direction

in region 2 [97].

The way of deriving the complex transverse propagation constants for TE case is very

similar to TM case by using the initial guesses derived in section 2.2, except for the set of

initial guess expressions at DC limit for two types of improper modes and the initial guesses

at high frequency limit for the incoming improper modes. The transverse attenuation

constants of several low orders proper modes and outgoing improper modes for κ = 1 are

shown in Figure 2.10. By comparing with Figure 2.7(a), it is found that the proper modes

are always well behaved from cutoff frequency to the high frequency limit. However, for

the outgoing improper modes, the real part of v will stop at DC limit with different values.

Due to the different values of κ, at DC limit the real parts of v are close to W−1(−r/2) for

κ = 1, and − tanh−1(1/κ) for κ6=1.
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(a)

(b)

Figure 2.9 Complex transverse attenuation constants for the low order incoming improper

mode stop at DC with κ = 4. (a) Real parts. (b) Imaginary parts. The Im-

proper3L in the legend represents the incoming improper in the third quadrant

stops at the low frequency limit.
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(a)

(b)

Figure 2.10 Transverse attenuation constants for several low orders proper modes and

outgoing improper modes with κ = 1. (a) Real parts. (b) Imaginary parts.
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(a)

(b)

Figure 2.11 Complex transverse attenuation constants for the low order incoming improper

mode stop at cutoff frequency with κ = 1. (a) Real part. (b) Imaginary part.
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Figure 2.12 Both the real and imaginary parts of the complex transverse attenuation con-

stant for the first TE incoming improper mode (m = 1) with κ = 1. The

Improper3S in the legend represents the special case of incoming improper

modes in the third quadrant.

Figure 2.11(a) plots the transverse attenuation constant for the low order incoming

improper mode stopping at the cutoff frequency. Similarly, by comparing with Figure 2.8,

it is found that the dispersion curves are smoother for the higher modes with κ = 1. However

for the incoming improper modes ending up at the DC, the behavior for the TE case shown

in Figure 2.12 is different from the TM case. Besides the different value at DC limit, v will

approach a constant value through the whole range for both the real and imaginary parts.
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Figure 2.13 The complex longitudinal propagation constants for low order proper, and two

types of improper modes. (a) Real part. (b) Imaginary part. The radius for

the rod is a = 0.01 m, and the dielectric constants inside and outside the rod

are εr1 = 4 and εr2 = 1 respectively.
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Our verifications are made by comparing our results with Kim’s results [13]. Through

the expression of the normalized longitudinal propagation constant δ = kz/k0, which can be

derived from Equation (2.9b) with given v. Both the real and imaginary parts for several

low order modes are illustrated in Figure 2.13. An agreement has been reached between

our results and Kim’s results. For the other high order incoming improper modes, they are

examined by substituting the numerical results into Equation (2.11), and the relative error

is down to 10−10.
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CHAPTER 3. ANALYSIS OF GUIDED AND LEAKY MODES IN

DOUBLE NEGATIVE CIRCULAR WAVEGUIDE

The analysis of guided and leaky modes for the DPS circular waveguide can be extended

to the DNG case. In this chapter, we follow the same procedure as we analyze the conven-

tional circular rod. First, express the characteristic equation for the DNG case, and define

different type of modes based on their propagation property. Second, expand the charac-

teristic equation asymptotically and then find the initial guess expressions for different type

of modes from different regions. Finally, use these initial guesses solve the characteristic

equation with iterative method and plot the dispersion curves.

3.1 Structure and Characteristic Equations

Compared with the structure for the DPS rod, the structure for the uniform DNG rod

is the same. This DNG rod is embedded in an infinite homogeneous medium, with radius

of a, and it is infinite along the z direction. The structure for the DNG rod is shown in

Figure 3.1. Both the permeability and permittivity for the rod are negative.

Figure 3.1 Circular rod with negative permittivity and permeability.
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By applying the continuity conditions of tangential fields to this DNG rod, the charac-

teristic equation for TM and TE cases can be derived by imposing m = 0 [27, 28], which

means the modes are without variations along the circular angle. Under this circumstance,

the characteristic equation for the DNG rod can be expressed as

κ

u

J1(u)

J0(u)
+

1

jv

H
(2)
1 (−jv)

H
(2)
0 (−jv)

= 0 (3.1)

Again, we assign κ = εr1/εr2 or κ = µr1/µr2 and κ < 0, Equation (3.1) represents TM

or TE case, where εri and µri are the relative permittivity and permeability respectively.

The second subscript i = 1 represents the region within the rod, where εr1 and µr1 are

negative, and i = 2 represents the region outside the rod. Jm(·) and H
(2)
m (·) are the m-th

order Bessel function of the first kind and Hankel function of the second kind. For the DNG

case, the value for κ can be various. We will focus on the case where |κ| ≥ 1 in this chapter.

In Equation (3.1), u and v are expressed as

u,k0a
√
µr1εr1 − δ2 (3.2a)

v,k0a
√
δ2 − µr2εr2 (3.2b)

where k0 is the wave number in free space. δ = kz/k0, and kz is the axial complex propa-

gation constant. Therefore, r is given by

r =
√
u2 + v2 = k0a

√
µr1εr1 − µr2εr2 (3.3)

The format of Equation (3.1) is exactly same as Equation (2.11) in Chapter 2, thus the

details for the derivation will not be repeated here. Although the format of two equations

are the same, due to the negative permeability and permittivity property, which leads

the rod to have negative refraction index, the wave propagation property will be different

physically. For example, the DNG rod will potentially support the Poynting vector of the

wave anti-parallel to the direction the phase flow of it. From the equation perspective, this

kind of difference is reflected from the negative value of κ in Equation (3.1). The dispersion
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curves for the DNG case can be further different from those in the DPS case, which will

be presented in the later part of this chapter. For Equation (3.1) we will still treat the

transverse complex propagation constant v as unknown, and define different type of modes

based on their wave behavior outside the rod along the radial direction as we did in 2.1.2.

The classification of the modes is the same as the one shown in Table 2.1, and the mode

definitions will be used in the later discussion.

The analysis for the relationship between special functions and corresponding propaga-

tion constants in 2.1.3, and the complex conjugate properties for the lossless rod in 2.1.4

still hold for the DNG rod case. We can directly use these conclusions without deriving

them repeatedly.

3.2 Initial Guesses for DNG Rod

3.2.1 Around the Cutoff Frequency

For the DNG circular rod, all the analysis procedures and conclusions are the same as

2.2.1 in Chapter 2. Thus the detail procedures in expanding Hankel function and Bessel

functions efficiently in finding the accurate initial guess will be skipped here. Only the

general form of the initial guess expression and the table for its corresponding relationship

with different type of modes will be presented here.

v = 2a−11 e
1
2
Wp(z(r)) (3.4)

where Wp(z) represents the Lambert W function [24, 25], subscript p denotes the p-th

branch, z(r) = a21c1/2, a1 = eγ−1/2κ, c1(r) = −χ0n(r−χ0n)/κ, χ0n denotes the n-th root of

zero order Bessel function of the first kind, and γ ≈ 0.577215664 is the Euler constant. Equa-

tion (3.4) can predict different types of modes for the DNG rod with appropriate branches

of Lambert W function. The corresponding branch and sign choices are summarized as
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Table 3.1 Corresponding branches to derive different types of modes for DNG rod

Proper Modes
Improper Modes

Outging Incoming

p value -1 1

sign(r − χ0n) (–) (+) (–)

sign(z) (–) (+) (–)

3.2.2 High Frequency Limit (|v| � |u| � 1)

After examining the values of u and v in the high frequency region (r � 1), it is found

|v| � |u| � 1. Under this circumstance Jm(·) and H
(2)
m (·) are still expanded with large

argument as Equation (2.39) and (2.40) in 2.2.2. The simplest form in predicting variable

u at high frequency range is expressed as u0 = π/4 + mπ, where m = 1, 2, 3.... The more

accurate initial expression can be derived by first rewritten Equation (3.1) as

tan
(
u− π

4

)
= −1

κ

u

v
(3.5)

For the proper modes, the primary form of v0 can be derived from Equation (3.2b) as

v0 =
√
r2 − u20 , by substituting this v0 expression into Equation (3.5), a set of more

accurate initial guess expressions for real proper modes are obtained as

u1 =
π

4
+mπ − tan−1

(
1

κ

u0√
r2 − u20

)
(3.6a)

v1 =
√
r2 − u21, m = 1, 2, 3... (3.6b)

The initial expression in Equation (3.6) is the same as Equation (2.42) we derived for the

DPS case. However, the corresponding relationship between the modes and the index m

is different from DPS case. Here, m = 1 corresponds to the real proper mode stop at

the second cutoff frequency, and m = 2, 3, 4... corresponds to the higher order modes with

ascending order of cutoff frequencies. For the improper modes in the second quadrant, the

primary form is v0 = −
√
r2 − u20. Following the same steps, a more accurate initial guess
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expression for outgoing improper modes are written as

u1 =
π

4
+mπ + tan−1

(
1

κ

u0√
r2 − u20

)
(3.7a)

v1 = −
√
r2 − u21, m = 1, 2, 3... (3.7b)

3.2.3 Low Frequency Limit

At low frequency range ( r � 1), we expand special functions in different ways, due

to the solutions for the complex proper mode and the incoming improper mode locate in

different regions. At DC limit, the right hand side of Equation (3.3) approaches zero, namely

u2 + v2 = 0, we have u ≈ −jv, and v ≈ ju . For the complex proper modes in the first or

fourth quadrants, v is found to be in the first quadrant and close to the positive imaginary

axis, thus u ≈ −jv is in the fourth quadrant and close to the positive real axis.

This indicates we could still expand Jm(u) and H
(2)
m (−jv) off the negative real axis

(|arg(z)| < π). However, the situation for the DNG case is more complicated compared

with the DPS case. To derive the accurate initial guess expressions for the complex proper

modes with different values κ, we need to keep more terms in the first order expansion of

Jm(z) and H
(2)
m (z)

Jm(z) ∼
√

2

πz

[
cos(z − mπ

2
− π

4
)− sin(z − mπ

2
− π

4
)
(4m2 − 1)

8z

]
(3.8)

and

H(2)
m (z) ∼

√
2

πz
e−j(z−

mπ
2
−π

4
)

[
1− j (4m2 − 1)

8z

]
(3.9)

By plugging in the asymptotic expressions from Equations (3.8) and (3.9) into Equation

(3.1), we have

κ
tan(u− π/4) +

3

8u

1 +
1

8u
tan(u− π/4)

= −u
v

1 +
3

8v

1− 1

8v

(3.10)
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we can further assume u = π/4+juI , where uI is the imaginary part of u. For low frequency

limit |u| � r, and v = ju
√

1− r2/u2 ≈ ju(1 − r2/(2u2)). Thus, Equation (3.10) can be

further written as

κ
tanhuI −

3j

8u

1 +
j

8u
tanhuI

=

(
1 +

r2

2u2

) 1− 3j

8u

1 +
j

8u

(3.11)

For Equation (3.11), we can further simplify it by neglecting the high order terms as

[
κ+

j(κ− 1)

8u

]
tanhuI ≈ 1 +

r2

2u2
+ (κ− 1)

3j

8u
(3.12)

For κ < −1, with large value of u, tanhuI ≈ 1/κ can be derived from Equation (3.12).

Correspondingly, we have uI ≈ tanh−1(1/κ).

This indicates Equation (3.5) can still be employed to derive the initial guesses for the

complex proper modes. This procedure is very similar to the derivation of the outgoing

improper modes for the DPS case at the low frequency limit in 2.2.3. The initial guesses

for the complex proper modes are expressed as

u0 = π/4 +mπ + j tanh−1(1/κ), m = 1, 2, 3... (3.13a)

v0 =
√
r2 − u20 ≈ j(π/4 +mπ)− tanh−1(1/κ) (3.13b)

In Equation (3.13), the lowest index m = 1 corresponds to the mode related to the

second order real proper modes, and m = 2, 3, 4... corresponds to the higher order complex

proper modes related to 3rd, 4th, 5th ... order of real proper modes.

For κ = −1, uI < 0, both u and uI are of large values, tanhuI = (e2uI − 1)/(e2uI + 1)

can be approximated as

tanhuI = −1 + 2e2uI (3.14)

To further derive the equations , we can neglect r2/(2u2) in Equation (3.12) first and

simplify it as

tanhuI ≈ −1 +
j

u
(3.15)
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By combining Equation (3.15) and Equation (3.14) together we have

2ue2uI = j (3.16)

With uI = −j(u − π/4), Equation (3.16) can be further simplified, and the initial guess

expression of v is written as

v = −1

2
W−m(−j) m = 1, 2, 3... (3.17)

For the incoming improper modes of the DNG case, its property is very similar to the

incoming improper modes for the DPS case. At DC limit, the variable v is around the

negative imaginary axis, correspondingly u ≈ −jv is in the second quadrant and close to

the negative real axis. Therefore we need to expand both H
(2)
m (−jv) and Jm(u) around the

negative axis according to Equation (2.45) and (2.48) respectively, and rewrite Equation

(3.1) as

tan(u+ π/4) =
ju

v

1

κ

3 tan(u+ π/4)− j
3 + j tan(u+ π/4)

(3.18)

The derivation of Equation (3.18) can refer to 2.2.2.2 in Chapter 2. For κ 6= 1, Equation

(3.18) can be further reduced to

tan(u+ π/4) =
1

κ

3 tan(u+ π/4)− j
3 + j tan(u+ π/4)

(3.19)

In Equation (3.19) tan(u + π/4) is treated as variable. In stead of neglecting one of the

two solutions in the DPS case, here we need to keep both of the solutions to catch all the

incoming improper modes at low frequency limit. Consequently, we will have

tan(u+ π/4) = jκ̃± (3.20)

where

κ̃± =
3(κ− 1)±

√
9(κ− 1)2 + 4κ

2κ
(3.21)
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Therefore, the initial guesses for the incoming improper modes stop at DC limit are ex-

pressed as

u±0 = π/4 +mπ + j tanh−1(1/κ̃±), m = −1,−2,−3, ... (3.22a)

v±0 = −
√
r2 − (u±0 )2 ≈ j(π/4 +mπ)− tanh−1(1/κ̃±) (3.22b)

3.2.4 Special Treatment for Evanescent Mode

Unlike the first order real proper in the DPS case, whose initial guess can be predicted

easily from the high frequency limit or around the cutoff. For the DNG case, with different

values of κ, the first order real proper mode shows the low frequency limit behavior or high

frequency limit behavior different from other higher order real proper modes.

In order to derive the first order real proper mode completely, different values of κ from

low frequency limit or high frequency limit. We first employ the characteristic Equation

(2.12). For real proper modes, In v is real, u = j
√
v2 − r2 is pure imaginary. Thus, Equation

(2.12) can be rewritten as

κ√
v2 − r2

I1(
√
v2 − r2)

I0(
√
v2 − r2)

+
1

v

K1(v)

K0(v)
= 0 (3.23)

where In(v) is the modified Bessel functions of the first kind. When | arg(v)| < π, modified

Bessel function of the first kind and second kind are expanded as [24]

Im(v) ∼ ev√
2πv

∞∑
k=0

(−1)k
ak(m)

vk
(3.24)

Km(v) ∼ e−v
√

π

2v

∞∑
k=0

ak(m)

vk
(3.25)

where a0(m) = 1, and ak(m) = (4m2 − 1)(4m2 − 32) · · · (4m2 − (2k − 1)2)/(k!8k), with

k ≥ 1. For the case when m = 0, and m = 1, I1(v)/I0(v) = (8v − 3)/(8v + 1), and

K1(v)/K0(v) = (8v + 3)/(8v − 1). When κ = −1, the first order real proper mode has

a high frequency limit. Under this circumstance v � r � 1, we can plug the expansion
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expressions of I1(
√
v2 − r2)/I0(

√
v2 − r2) and K1(v)/K0(v) into Equation (3.23), and keep

the first two terms

v −
√
v2 − r2 =

1

8

[
2 + 3

(
v√

v2 − r2
+

√
v2 − r2
v

)]
(3.26)

For the high frequency limit, as v � r, the right hand side of Equation (3.26) approach

one. After further simplification of Equation (3.26), we have

v ≈ r2/2 (3.27)

For the low frequency limit r � 1, when κ < −1, Equation (3.23) can be simplified as

κ

v

I1(v)

I0(v)
+

1

v

K1(v)

K0(v)
= 0 (3.28)

For large value of positive Re(v), we can still plug in the asymptotic expansion expressions

of I1(v)/I0(v) and K1(v)/K0(v), then we will have

v =
κ− 1

2(κ+ 1)
(3.29)

3.3 Numerical Results and Discussions

The guided and leaky modes for the DNG circular waveguide are solved with Newton-

Raphson method [95] using the initial guesses derived from the previous section around the

cut-off frequency and the high or low frequency limits. To maintain unity, the solutions

presented in this section are still solved by using characteristic equation with the second

kind of Hankel function on the principal plane. For the numerical examples, normalized

or unnormalized complex transverse attenuation constant v will be shown according to the

modes defined in Table 2.1.

Several low order proper and complex proper modes are shown in Figure 3.2. Compared

with the real modes for the DPS circular rod, the real proper modes for the DNG own the

same feature of not propagating in the transverse direction, and meanwhile have positive

attenuation constants above the cutoff frequency. This property is illustrated in Figure 3.2.
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However, the real proper modes for the DNG case are not exactly same as the DPS case. The

difference mainly comes from two aspects. First, from the dispersion curve shown in Figure

3.2 we found that the normalized propagation constant does not monotonically increase

as r increases, for the small region below the cutoff frequency, the normalized propagation

constant increases as r decreases. This indicating a backward wave propagation [13], which

is evidence from the negative slope in part of the dispersion curve for the real proper mode.

For this backward wave region, the Poynting vector is anti-parallel to the direction of the

phase flow. Second, compared with the real proper modes in the DPS case, instead of

directly converting into the improper modes below the cutoff, the real proper modes for

the DNG case can also convert into complex proper modes at point A shown in Figure

3.2, which is treated as a critical point [13]. These real proper modes are generated either

from the cutoff frequency using initial guess expression in Section 3.2.1, or from the high

frequency limit in Equation (3.6). What should be emphasized here again is that the first

order real proper mode (m = 0) is different from other higher order modes, this first order

real mode stops at DC, which is shown clearly in Figure 3.3. For this special mode, besides

deriving it around cutoff frequency, we can derive it from low frequency limit as well. For

this case, v ≈ 0.8186 as shown in Figure 3.3 is very close to 5/6 calculated from Equation

(3.29). From the analysis in the high frequency limit, the asymptotic value for the upper

bound is still
√
µr1εr1 − µr2εr2 for DNG case.
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(a)

(b)

Figure 3.2 Complex transverse attenuation constants for several low orders real proper

and complex proper modes of DNG rod with κ = −4. (a) Real parts. (b)

Imaginary parts.
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For a better visualization, the real part of the unnormalized complex proper modes in

shown in Figure 3.3. This complex proper modes only exist in the DNG case, it starts

from the low frequency limit, and extends to the critical point, and then bifurcates into

two branches of real proper modes AB and AC. This complex proper modes can be only

predicted from the low frequency limit by using Equation (3.13). For the case of κ = −4,

the real part for the low frequency limit for the complex proper modes can be evaluated

from −tanh−1(1/κ) ≈ 0.2554, which is consistent with numerical results shown in Figure

3.3.

As the operating frequency decreases to the cutoff frequency as shown as Point B on

Figure 3.2 and Figure 3.3 , the real proper modes will vanish, and the improper modes

appear. Very similar to the DPS case, there are two types of improper modes related to

the DNG case. For the outgoing improper modes, which is above the cutoff frequency. The

dispersion curve for this type of improper modes is demonstrated in Figure 3.4. There are

two ways to derive this outgoing improper modes as we mentioned in the previous sections,

one is around the cutoff frequency using Equation (3.4) with p = −1 shown in Table 3.1,

the other one is from the high frequency limit according to Equation (3.7)

This set of outgoing improper modes can be generated from using the initial guesses

derived in Section 2.2.1, or using the initial guesses from the high frequency limit with

Equation (3.7). Further, they are well indexed from low order to high order according the

integer m in Equation (3.7). Similar to the real proper modes, the outgoing improper mode

has a low bound asymptotic value of −
√
µr1εr1 − µr2εr2 at high frequency limit.

Besides the outgoing improper modes, there is another type of improper modes, which

is operating under the cutoff frequency. This type of incoming improper mode has not been

demonstrated in Kim’s work [13]. For the convenience of visualization, the unnormalized

incoming improper modes are demonstrated in Figure 3.5. There are two possible ways to

derive this type of improper modes as well. The first method is starting from the cutoff

region, by using Equation (3.4) with p = 1. The numerical results are presented in Figure
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3.5. Although deriving different types of modes near the cutoff region is convenient, it

provides relative less information to connect the initial guess expression with the order of

modes. Based on this consideration, we are always trying to access the same type of modes

in different ways to build more connections between the initial guess expressions and the

numerical results. The second way to derive this incoming improper modes is from the low

frequency limit by using Equation (3.22). From v+0 we can access the incoming improper

modes related to the odd order cutoff except the first order, and from v−0 we can access the

incoming improper modes related to the rest of the cutoff.

A more intuitive plot is shown in Figure 3.6. The dash pink lines represent the set

of modes from v+0 , and the solid green lines represent the rest of modes from v−0 . For

the set of pink curves, their real parts will focus to a constant value at the low frequency

limit. This constant value can be derived as Re(v+0 ) ≈ Re(−tanh−1(1/κ̃+)) ≈ −0.0680

using Equation (3.22) . Correspondingly, for the set of green curves, the real parts will

merge to another constant value at low frequency limit. This constant value is derived

from Re(v−0 ) ≈ Re(−tanh−1(1/κ̃−)) ≈ −0.2786. The low frequency limit for the imaginary

part of the incoming improper modes are from Im(v±0 ), where Im(v−0 ) ≈ π/4 + mπ +

Im(−tanh−1(1/κ̃−)) ≈ π/4 + mπ for the group of green lines, and Im(v+0 ) ≈ π/4 + mπ +

Im(−tanh−1(1/κ̃+)) ≈ π/4 +mπ + π/2 for the group of pink lines.
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Figure 3.3 Real part of the transverse attenuation constants for several low order real

proper and complex proper modes increases with κ = −4.
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(a)

(b)

Figure 3.4 Complex transverse attenuation constants for several low order real proper and

outgoing improper modes with κ = −4. (a) Real parts. (b) Imaginary parts.
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(a)

(b)

Figure 3.5 Complex transverse attenuation constants for several low order real proper and

incoming improper modes with κ = −4. (a) Real parts. (b) Imaginary parts.
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(a)

(b)

Figure 3.6 Complex transverse attenuation constants for several incoming improper modes

with κ = −4. (a) Real parts. (b) Imaginary parts.
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Compared to the case κ = −4, the way to derive numerical results for case κ = −1 is

very similar, except some difference at high and low frequency limit behaviors, which are

consequence from different value of κ through the initial guess derivations.

Several low order proper and complex proper modes are shown in Figure 3.7. Comparing

with the unnormalized real parts of complex proper modes shown in Figure 3.3 and the

unnormalized imaginary parts in Figure 3.2 (b), it can be observed that the behavior for

the imaginary parts are very similar from cutoff to the low frequency limit. However, the

low frequency limit behaviors for the real parts are different. Unlike the case for κ = −4,

where the real parts can be evaluated from −tanh−1(1/κ), for κ = −1 the real parts for

complex proper modes are evaluated from Equation (3.17) and correspondingly the real

parts can be calculated from Re[(−1/2)W−m(−j)], where m = 1, 2, 3... is the mode order.

The normalized real proper modes and outgoing improper modes for case κ = −1 are

demonstrated in Figure 3.8. The numerical results for outgoing improper modes are almost

the same for cases κ = −1 and κ = −4. All the outgoing improper modes can be derived

from high frequency limit with Equation 3.7 or from cutoff frequencies as shown in Section

2.2.1. The behaviors of the real proper modes demonstrated in Figure 3.8 is very similar

to the real proper modes shown in Figure 3.4 except the first order real proper modes. For

case κ = −1, instead of stop at the low frequency limit, it will go and rise to the high

frequency limit. This special behavior for the first order real proper mode can be either

derived from the cutoff or from the high frequency limit by using Equation 3.27. In this

case, with κ = −1, r =
√

3k0a and v/(k0a) =
√

3r/2 ≈ 0.866r. Correspondingly, in Figure

3.8 when r = 25, v/k0a ≈ 21.65.

The behavior of the incoming improper modes for κ = −1 are demonstrated in Figure

3.9.
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(a)

(b)

Figure 3.7 Complex transverse attenuation constants for several low order real proper and

outgoing improper modes with κ = −1. (a) Real parts. (b) Imaginary parts.
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(a)

(b)

Figure 3.8 Complex transverse attenuation constants for several low order real proper and

outgoing improper modes with κ = −1. (a) Real parts. (b) Imaginary parts.
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(a)

(b)

Figure 3.9 Complex transverse attenuation constants for several low order real proper and

outgoing improper modes with κ = −1. (a) Real parts. (b) Imaginary parts.
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CHAPTER 4. MECHANICALLY TUNABLE COMPLIANT

META-ATOMS

4.1 Metamaterial-Overview

Matematerials are fascinating artificial materials that can manipulate electromagnetic

wave in surprising ways. Their structure is usually composed of subwavelength metallic

resonators hold by dielectric. As the ‘unit’ element of metamaterial, these periodical metal-

lic resonators could change the electromagnetic properties of the metamaterial through

interacting with incidence wave.

Seminal explorations of artificial materials in manipulating electromagnetic waves can

be dated back to the end of the 19th century. The earliest structures that may be considered

as metamaterials are substances with chiral properties. The term “metamaterial” is initially

specifically referring to those artificially designed electromagnetic structure with unusual

electromagnetic properties that are rarely found in nature, later the meaning of so-called

“metametarial” is extended to other types, such as elastic and acoustic [98, 99].

In the process of studying metamaterial, Russian physicist Veselago first theoretically

predicted extraordinary electromagnetic property of metamaterial with a simultaneously

negative permittivity and permeability, such as the reversal of Snell’s law, a reversed Doppler

effect [100]. Through his analysis, this type of material is treated as left-handed material,

since electric field, magnetic field, and propagation vector obey the left-handed rule. How-

ever, his prediction was not widely accepted until Smith’s et al [63] experimental mate-

rialization in 2000 by using split-ring resonators (SRRs) [101] and continuous wires [102].

These were first introduced by Pendry [101]-[103], who suggested that they can also act as

perfect lenses [104]. Later, various kinds of new structures have been proposed and realized

[105, 106] based SRRs and thin wires.
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Although there is no consensus on the definition of metametarial currently, the com-

mon attributes of metametarial can be concluded as [107]: (1) The structures are described

with homogenized electromagnetic parameters; (2) they are usually based on conducting,

resonant inclusions, which will finally determine the electromagnetic parameters; (3) the res-

onator inclusions are positioned periodically; (4) the scale of periodicity is smaller—usually

by a factor of 5 to 10 times—than that of the free-space wavelength of excitation. Structure

with these feature made it distinguished from the existing artificial material categories.

In terms of the real permittivity and permeability, normal dielectrics typically occupy

the domain where both quantities are positive. Negative values of the permittivity can

be obtained in nature through the radiation-plasma interaction, but this interaction is

typically the occurred well beyond the infrared for those solid-state plasmas. To realize

the negative permittivity at lower frequency, thin-wire lattices [102] are adopted to dilute

the plasma cloud and shift the plasma frequency to a lower part of the spectrum. The

negative permeability is rare in nature, it can be obtained from magnetic resonances in

ferromagnets at submicrowave frequencies, such as split-ring resonators (SRRs) [101]. This

structure can exhibit magnetic dipole and negative permeability in response to magnetic

waves. Free tuning the electric and magnetic responses of metamaterials brings about

the possibility to realize double-negative materials or negative-index materials (NIMs), in

which both the permittivity and permeability are less than zero at the same frequency.

Such materials have not yet been found in nature, and the first realization of NIMs exploits

the combined operations of wires and SRRs at the same microwave frequency to generate

overlapping negative permittivity and permeability [63]. Due to this unusual behavior,

NIMs have raised a wide interest in metamaterials and become the center of metamaterial

research aimed at operation in the visible frequency range [108]-[110] for different kinds of

applications.
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4.2 Desgin and Electromagnetic Simulation

In this part of the thesis we present a novel tunable and flexible SRR-based meta-

atom capable of tuning its EM response characteristics over a broad frequency range by

simple mechanical stretching. The present meta-atom used a liquid metal as the resonator

material. The liquid metal was patterned to be a SRR structure and embedded inside a

highly stretchable silicone elastomer. Due to its liquid nature, the liquid metal-based SRR

could flow in response to an applied strain, and thus, was not prone to fatigue or cracking.

When the encasing elastomer was stretched and twisted, the SRR was shown sufficiently

compliant to yield the necessary deformation. Therefore, by changing the shape of the SRR

via simple mechanical stretching, the gap distance and thus the gap capacitance of the SRR

could be adjusted, thus tuning the resonance response of the meta-atom. Material of this

chapter is based on co-paper published in JAP [111] with Co-author Peng Liu [112]

Figure 4.1 The simulated magnitude of the electric field (E) distributions in the tunable

liquid metal SRR at the resonance frequency of 9.214 GHz when not stretched

(a), at 9.214 GHz when stretched by 30% along the y direction (b), and at the

new resonance frequency of 8.782 GHz when stretched (c) .

To test the concept of the mechanical tuning, the liquid metal SRR was designed to op-

erate in the X-band frequency range. While many other types of liquid metal could be used,

the present SRR used eutectic gallium-indium or EGaIn (75.5% gallium and 24.5% indium),
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a liquid at room temperature and a solid at 14◦C, because of its favorable attributes, such

as high electrical conductivity, low toxicity, and light weight. Structurally, the liquid metal

SRR had the inner radius of a = 1.5 mm, the outer radius of b = 2.0 mm, the thickness

of h = 0.5 mm, and the gap of g = 1.0 mm. The SRR was encased by Ecoflex, a highly

stretchable silicone elastomer with the maximal elongation at break of 900%. It’s notewor-

thy that Ecoflex is thermally curable and suitable for replica molding from a master mold,

just like polydimethylsiloxane, a commonly used elastomer used in soft lithography. The

length, width, and thickness of the Ecoflex encasing membrane were l = 11.0 mm, w = 7.5

mm, and t = 1.45 mm, respectively. To illustrate the influence of the mechanical stretching

on the resonance of the SRR, the Ansys high frequency structure simulator (HFSS) soft-

ware was employed to conduct the EM simulations. As shown in Figure 4.1, the SRR was

fixed in the x − y plane inside a waveguide and the magnetic field (H) was parallel to the

z direction and penetrated through the SRR, thus exciting the magnetic resonance. The

simulation result shows that when the gap of the SRR was aligned along the y direction, the

resonance frequency of the SRR before stretch was at 9.214 GHz (Figure 4.1(a)). Applying

the stretch of 30% along the y direction led to an increase in the gap of the SRR along the

same direction (Figure 4.1(b)). Consequently, the SRR was brought out of resonance at the

9.214 GHz and resonated at the new frequency of 8.782 GHz (Figure 4.1(c)). We note that

the simulation here only conceptually illustrated the proposed tuning concept. The more

quantitative simulation results are presented later, together with the experimental results.

Figure 4.2 shows the fabrication process flow for the proposed tunable meta-atom. First,

to form the SRR-shaped microchannels, an 800-µm-thick Ecoflex layer L1 was cast upon

a master mold made of SU-8 photoresist on a silicon (Si) wafer W1, and then, was fully

cured at 60◦C on a hotplate for 30 mins (Figures 4.2(a)-(b)). In a parallel process, a 100-

µm-thick Ecoflex thin layer L2 was spin-coated on another Si wafer W2, followed by partial

curing at 50◦C on a hotplate for 40s (Figure 4.2(c)). Subsequently, the layer L1 was peeled

off from the master mold and adhered to the partially cured layer L2. The two layers
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L1 and L2 were then permanently and thermally bonded together on a hotplate at 90◦C

for 30 mins (Figure 4.2(d)). After the two bonded layers were peeled off from the wafer

W2, the liquid metal EGaIn was injected into the embedded microchannels through two

100-µm-diameter holes mechanically punched at the two ends of each microchannel. There

were some residues of the eutectic alloy remaining around the holes on the top surface of

the Ecoflex structure. To clean the top surface, a cotton swab was dipped in a solution of

hydrochloric acid (50%, v/v) and then carefully wiped off any residues from the top surface

(Figure 4.2e). To encapsulate the liquid metal inside the Ecoflex elastomer, a new Ecoflex

prepolymer solution was poured onto the cleaned top surface, followed by a full curing

process performed at 80◦C on a hotplate for 30 mins (Figures 4.2(f)-(g)). Therefore, the

liquid metal SRRs were formed inside the elastomer. The total thickness of the elastomer

was 1.45 mm as mentioned. The SRRs were located nearly at half the thickness of the

elastomer. Lastly, individual SRRs were diced out of the whole elastomer for testing [112].

Figure 4.2 The fabrication process for the tunable liquid metal SRR.
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4.3 Device Measurement

EM measurements were carried out over the X-band using a WR90 rectangular waveg-

uide (22.86 × 10.16 mm) terminated by a UG39/U cover flange. When the waves propagate

in the waveguide, the directions of E and H are along the short edge and the long edge of

the waveguide, respectively. The walls of the waveguide act as reflective mirrors and make

the SRR cell behave as an element in a 2D quasi-periodic structure with normal incidence

wave. The SRR sample was attached onto a wood slab (low-loss microwave substrate ma-

terial) and centered in the middle of the waveguide. The spectra were measured using a

programmable vector network analyzer (Agilent E8364) [112].

Figure 4.3 The six possible arrangements of the SRR inside a testing waveguide. The inset

in (a) shows the relative location of the ring to the waveguide. The electric

dipole formed by opposite electric charges accumulating across the gap of the

ring couples the SRR resonance to the electric field of the incident waveguide

mode in (a) and (c). The magnetic moment due to the loop current couples to

the incident magnetic field normal to the ring plane in (b) and (c). No coupling

to the resonance was found in (d), (e), and (f) in X-band
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There were six possible placements of the SRR inside the waveguide, as illustrated in

Figure 4.3, among which three (Figures 4.3(a), 4.3(c), and 4.3(d)) could excite the resonance

of the circular ring current in the SRR structure (magnetic dipole resonance). The SRR

dimensions were chosen such that this resonance would occur within the X-band for the

stretched and unstretched samples. Figure 4.3(a) displays that the incident wave was normal

to the plane of the ring and the electric field was parallel to the gap direction. In this

configuration the electric dipole formed across the gap allows coupling of the electric field

of the waveguide mode to the magnetic dipole resonance of the SRR because of the broken

symmetry of the ring with respect to the direction of E. In the case shown in Figure

4.3(c), both, the electric moment across the gap driven by the incident E field and the

magnetic moment of the circular ring induced by the incident B field current jointly excite

the resonance of the ring. Figure 4.3d shows that the magnetic field was normal to the plane

of the ring, thus exciting a circulating current in the ring the induced magnetic moment.

Neither electric dipole nor magnetic moment could couple to the incident waveguide mode

in the other three configurations shown in Figures 4.3(b), 4.3(e), and 4.3(f).

Theoretically, the unit SRR can be treated as a LC loop, where L is the equivalent net

inductor from the SRR loop and C is the equivalent net capacitor from the charge accu-

mulation in the gap region, and hence the resonance frequency of a SRR unit is estimated

as:

f =
1

2π
√
CL

(4.1)

Both the inductance and capacitance of the SRR unit will change as unit cell being

stretched in different directions, which finally shift the resonance frequency according to

Equation 4.1.

In this set of experiments, there are two possible stretching manners. One is stretching

the unit cell along the gap direction; the other is stretching the unit cell perpendicular to

the gap direction. These two types of stretching lead different deformations to the unit cell,

which will finally present different electromagnetic responses.
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(a) (b)

Figure 4.4 (a)Schematic of SRR unit in the free space, a delta source is set along the gap.

(b) The equivalent circuit for the SRR as shown in (a)

In order to have a better understanding of the trend of shifting resonance frequency

shown in the experiment, simulations are carried out in HFSS based on single unit cell in

the free space. In this simulation, a delta-gap source is set along the gap direction to excite

the unit cell, which is shown in Figure 4.4(a), and the impedances are measured by sweeping

the frequencies we are interested with. A one port equivalent circuit is designed to describe

the resonance behavior of the stretching SRR unit, which is shown in Figure 4.4(b). The

equivalent circuit takes consideration of the equivalent inductor (L), and the equivalent

capacitor (C), as well as the dielectric loss (Rd) from the substrate, metallic loss (Rm)

from the liquid metal. The lumped L and C are obtained by optimizing the impedance of

equivalent circuit according to the simulated impedances around resonant frequency with

less than 3% of relative error for each stretching case.

The setup in this simulation is not exactly same as the set up in the experiment, which

is excited within a waveguide where interaction with the metal wall may exist. However,

compared with the effect from the mutual interaction with metal walls, the deformation of

the unit cell is considered to contribute most to the changes of resonant frequencies. As

matter of fact, we expect the simulation of stretching SRR in the free space to reveal the

resonance shifting trend.
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(a)

(b)

Figure 4.5 The capacitance and inductance with different stretch ratios. (a) Stretching

along the perpendicular gap direction. (b) Stretching along the gap direction.

From Figure 4.5, it is observed that as the unit cell being stretched in two perpendicular

directions, the equivalent capacitance and inductance will increase as the stretch percent-

age increases. The increment of two components will lead to the decrement of resonant

frequency, and the incremental trend of the perpendicular stretching case is more obvious
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than the case stretching along the gap. This difference can be caused by the smaller gap

when stretching in the perpendicular direction, which makes the delta-gap source more

effective.

Experiment-wise, the major contributor of net capacitance for a SRR is the gap capac-

itance Cgap which depends on the gap geometry . On the other hand the net inductance

consists with self-inductance of the conducting loop and the mutual inductance induced

by the boundary conditions of waveguide that imposed on the SRR for certain orienta-

tions (quasi-periodic structure). The self-inductance of an un-stretched circular loop and a

stretched elliptical loop are both geometrically dependent. The mutual inductance not only

depends on the self-inductance but also relies on the SRR orientations with different mirror

effect imposed by the waveguide. Undoubtedly, the geometry change by simply stretching

will have great impact on both net capacitance and inductance, thus shift the resonance

frequency.

In the first measurement arrangement (Figure 4.3(a)), the SRR was stretched along the

H-field direction with different stretch ratios. The external electric field was formed across

the gap to excite the electric resonance that corresponded to a transmission dip at the

resonance frequency in the transmittance spectrum.

Figure 4.6 shows that by stretching the SRR, the resonance was progressively tuned to

the lower frequencies. Specifically, for the stretch ratio of 17%, 28%, 53%, and 72%, the

resonance frequency red shifted from 10.54 GHz to 9.78 GHz, 9.05 GHz, 8.52 GHz, and

7.67 GHz, respectively. This configuration is corresponding to the stretching case shown in

Figure 4.5, both L and C are increased caused by the stretching, which resulted in a red

shift in resonance frequency.

We conducted the finite element method analysis (FEA) with the COMSOL Multi-

physics simulator, where different strains were applied to the two sides of the sample (Figure

4.6). The simulated structural deformation of the ring agrees well with the experimental

result, and shows that as the ring was stretched, the geometry of the SRR was changed



www.manaraa.com

67

dramatically and the liquid metal inside the SRR was compressed with the elastomer and

remained connected. The deformation profiles under different stretches were modeled in

finite integration solver based electromagnetic simulation tool CST Studio. The SRR was

made of liquid metal with conductivity of 3.46 × 107 and was encapsulated in ecoflex cell.

The dielectric constant and loss tangent of ecoflex silicone rubber we used in this study were

2.5, and 0.01 respectively. The cell was placed on a wood substrate with dielectric constant

of 1.22 and loss tangent of 0.1. The simulation was conducted in a waveguide with four

aluminum walls. All the simulation conditions exactly mimic the real measurement setup

in order to get a better consistence. The simulated transmittance profiles were presented

with dot line along with the experimental results in Figure 4.6.

In the second measurement arrangement (Figures 4.3(c) and 4.7), the resonance was

excited by both the electric and magnetic field. Experimentally, at different stretch levels

of 17%, 28%, 53%, and 72%, the resonance frequency was observed to red shift from 10.21

GHz to 9.58 GHz, 9.37 GHz, 8.58 GHz, and 7.37 GHz, respectively. The CST simulated

result is presented with dot line in Figure 4.7 as well. For this case, the stretching direction

is the same as the previous case, and the trend of shifting resonance frequency agrees with

simulated L and C shifting trend shown in Figure 4.5(a) according to Equation 4.1.

In the third measurement configuration (Figures 4.3(d) and 4.8), the resonance was

induced by the circulating current in the ring caused by the magnetic field. The testing

results show that at the stretch of 17%, 28%, 53%, and 72%, the resonance frequency

shifted from 9.58 GHz to 9.24 GHz, 8.79 GHz, 8.32 GHz, and 7.32 GHz, respectively and

the decrement of resonance frequency was observed as expected according to our simulation

shown in Figure 4.5(b). When the device is stretched in this direction, both L and C

components will increase as the stretch ratio increase which will result in a decrease of

resonance frequency
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Figure 4.6 The measured and simulated transmittance spectra of the tunable liquid metal

SRR meta-atom at different stretching ratios of 0, 17%, 28%, 53%, and 72%,

when the meta-atom was placed inside the waveguide as shown in the inset.

Also, refer to Figure 4.3(a) for the measurement arrangement. The correspond-

ing experimental (upper) and simulated (down) results for the stretch-induced

deformations of the tunable meta-atom are also included.
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Figure 4.7 The measured and simulated transmittance spectra of the tunable liquid metal

SRR meta-atom at the different stretch levels or stretching ratios of 0, 17%,

28%, 53%, and 72%, when the meta-atom was placed inside the waveguide as

shown in the inset. Also, refer to Figure 4.3(c) for the measurement arrange-

ment. The corresponding experimental (upper) and simulated (lower panel)

results for the stretch-induced deformations of the tunable meta-atom are also

included.
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Figure 4.8 The measured and simulated transmittance spectra of the tunable liquid metal

SRR meta-atom at the different stretching ratios of 0, 17%, 28%, 53%, and

72%, when the meta-atom was placed inside the waveguide as shown in the

inset. Also, refer to Figure 4.3(b) for the measurement arrangement. The

corresponding experimental (upper) and simulated (lower panel) results for

the stretch-induced deformations of the tunable meta-atom are also included.

For all of these three cases, stretching increased the length edge in the gap region and

the fringing effect as well. In addition, more charge will be distributed near the gap region.

So the stretching directly increased the facing area of liquid metal by decreasing the front
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arm distance near the gap, which enhances the SRR’s ability in storing charge in the near

gap region, namely this stretching increased the equivalent capacitor.

For all three of the aforementioned measurement configurations, the testing results

showed fairly good agreement with the HFSS LC extraction result and CST Studio sim-

ulation results. The slight discrepancy between the simulated and testing results may be

attributed to the inaccurate geometrical parameters of the SRR extracted from the im-

ages of the deformed SRR (Figures 4.6, 4.7, and 4.8) and then applied to the CST Studio

simulations. Nevertheless, as demonstrated, when the same stretch of 72% was applied to

the SRR in all the three measurement configurations, the resonance frequency of the SRR

could be tuned by an absolute shift of 2.87 GHz (Figure 4.6), 2.83 GHz (Figure 4.7), and

2.26 GHz (Figure 4.8), or a relative shift of 27.2%, 27.8%, and 23.5%, with respect to the

original resonance frequency of 10.54 GHz, 10.20 GHz, and 9.58 GHz, respectively. Fig-

ure 4.9 summarizes the relationships between the stretch ratio and the resulting resonance

frequency shift.

The present meta-atom exhibited good repeatability in the resonance modulation, re-

sponding to multiple (> 500) cyclic tests. We note that further elongation of the SRR

beyond 72% would move the resonance frequency to below the lower cutoff frequency of

the waveguide used in this study. Even with the applied moderate stretch amplitude, this

tunable meta-atom method could provide a considerable frequency tuning range covering

71.75% (2.87 GHz divided by 4.0 GHz) of the whole X-band frequency range (8.0-12.0

GHz). Furthermore, by changing its overall size and geometrical parameters of the SRR,

the original resonance frequency of the SRR can be set to be at the upper limit of the

X-band frequency range. By doing that, tuning in the whole X-band frequency range may

be achieved with sufficient stretching. Our experiments showed that the present SRR could

be stretched by more than twice (> 200%) the original size in any directions, while keeping

the embedded liquid metal structure continuous, flexible, and recoverable, without breaking

of the encasing polymer layer or occurring of structural hysteresis.
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Figure 4.9 The resonance frequency as a function of the stretch ratio for the tunable

meta-atom in the three measurement configurations shown in Figures 4.6-4.8

4.4 Conclusions

A liquid metal SRR-based tunable meta-atom was demonstrated in the X-band fre-

quency range. The meta-atom consisted of a liquid metal resonator encased by a flexible

elastomer skin. By stretching the meta-atom, the resonance frequency of the meta-atom

was tuned continuously over more than 70% of the whole X-band frequency range. The

meta-atom in this study presents a simple but effective building block for realizing mechani-

cally tunable metamaterials. Also, since the constituent materials of the present meta-atom

are relatively ecofriendly, reusable and durable, the metamaterials made of such meta-atoms

potential will find many applications in wearable EM coatings and devices.
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CHAPTER 5. FROM META-ATOM TO META-SKIN: A

WEARABLE MICROWAVE DEVICE WITH CLOAKING EFFECTS

AND TUNABLE FREQUENCY SELECTIVE PROPERTY

In this chapter we extend the previous work of single meta-atom to meta-skin. This

meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) that em-

bedded in a stretchable elastomer. By arranging the meta-atoms into a 2-Dimensional (2D),

the difficulties of single meta-atom to demonstrate its application in practice is improved.

Based on its feature of flexible and stretchable, we demonstrated two potential applications.

One is tunable frequency selective surface, and the other is “cloaking” effect in suppressing

the scattering field from an object.

The material for this chapter is based on co-paper published in Scientific Report [113]

with Co-author Peng Liu [112].

5.1 Meta-skin Desgin and Electromagnetic Simulation

Figure 5.1(a) shows the schematic of the meta-skin, which is composed of 225 identical

SRR meta-atoms. These meta-atoms are arranged in a 15×15 2-dimensional (2D) with the

lattice constant of p = 7.5 mm. For the dimensions of the the SRR in the meta-atom are

illustrated in Figure 5.1(a), where the inner radius a = 2.0 mm, the outer radius b = 2.5

mm, the thickness h = 0.5 mm, and the gap g = 1.0 mm. Based on the dimension of single

SRR, this meta-skin is designed to work in X-Band regime. The SRRs in the 2D array are

made of liquid metal (EGaIn) and encased by a silicone elastomer (Ecoflex). The thickness

of the Ecoflex is d = 1.45 mm. EM simulations were conducted to estimate the resonance

frequency of the array by using ANSYS High Frequency Structure Simulator (HFSS). As

shown in Figure 5.1(a), the SRR array is placed in the x − y plane, and the magnetic
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field (H) is parallel to the z direction and penetrates the SRRs, thus induced the magnetic

resonance. With the aforementioned geometrical parameters for the SRR, the resonance

frequency for the meta-skin device is around 9.84GHz. The surface current distribution

at the resonance frequency is demonstrated in Figure 5.1(a). By stretching the meta-skin

(As shown in Figure 5.1(b)), the lattice constant, the shape of the SRRs, and the mutual

interaction between the SRRs will be modulated. Accordingly, the resonance frequency of

the meta-skins will be shifted [111].

The fabrication process for the meta-skin is exactly same as the one for the single meta-

atom, which has been presented in detail in 4.2 from Chapter 4. Thus, it will not be

repeated here.

Figure 5.1 (a) Geometry and simulated surface current distribution of the meta-skin. (b)

Photos of the unstretched and stretched meta-skin. Scale bars represent 5 mm.

(c) A photo of a 30.48 cm long, 3.175 cm diameter dielectric nylon rod wrapped

by the meta-skin. (d) Flexibility demonstration with a glass flask wearing the

meta-skin.
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5.2 Tunable Frequency Selective Characteristic

EM measurements were conducted in free space. A programmable vector network ana-

lyzer (VNA, Agilent E8364) was used to measure the spectral responses from sample. To

generate a quasi-plane wave illumination, the meta-skins were placed between two horn

antennas (one as a transmitter and the other as a receiver) within the far field regions.

5.2.1 Measurement and Results

Due to the highly stretchable feature of the meta-skin, the dimensions of the SRRs can

be altered through stretching along different directions. Our previous research showed that

the stretch-induced dimensional changes of the SRR can influence the equivalent inductance

and capacitance of the SRR, thus shifting its resonance frequency [111].

To exam the true performance of the multi-layer meta-skin, 6 pieces of meta-skin were

fabricated to construct a testing device. The schematic for the device is shown in Figure

5.2(a), and the real device is shown in Figure 5.3(a). These 6 pieces of meta-skin were

aligned in the direction perpendicular to the surface of meta-skin, with initial space of

d = 3 mm between two neighboring pieces. The whole multi-layer meta-skin device are

placed between two horn antennas (one antenna as receiver and the other as transmitter)

in their far-field regions to achieve a quasi-plane wave interaction. In order to excite the

magnetic resonance, the meta-skin are placed in the E-plane of the antenna, so that the

H can be coupled to magnetic resonance from the current loop in SRR. This experimental

setups are illustrated in Figure 5.2(a).

In this experiment, as the multilayers of the meta-skins were stretched along the wave

propagation (k) direction with the stretch ratio of 0%, 15.9%, 29.7%, 36.4%, and 50%.

Accordingly, the strong resonances of the meta-skins were observed at 9.84 GHz, 9.76 GHz,

9.47 GHz, 9.27 GHz, and 9.15 GHz, respectively. The measurement results are shown in

Figure 5.2(b) with dashed lines.
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Since the vertical space d between two neighboring layers also affect the resonance

distribution in the spectra, two more supplementary experiments are carried out. The

space between two neighboring layers were defined by inserting fixed size foam, which has

relative permittivity close to one. Figures 5.2(c), (d) show the spectral responses of the

meta-skins to different stretching levels for the spacing of d1 = 13 mm and d2 = 17 mm,

respectively.

As the meta-skins moved farther away from each other, the mutual inductance between

the resonators in the neighboring layers is reduced. Consequently, an increase in resonance

frequency of the meta-skins is expected. Indeed, for the unstretched sample, the resonance

frequency was shifted from 9.84 GHz to 11.9 GHz as the vertical spacing increased from 3

mm to 13 mm. As we further increased d to 17 mm, the resonance frequency was shifted

to 12.4 GHz. Similarly, by stretching the multilayer metal-skins along their surfaces in the

horizontal direction, the resonance frequency was also observed to move towards lower fre-

quencies. Therefore, by varying the spacing between the meta-skins in the vertical direction

and stretching the metal-skins in a planar direction, the resonance frequency tuning range

of the meta-skins can be largely broadened.

To verify the reliability of experimental results, an HFSS-based full wave EM simulation

was carried out. In order to obtain the authentic deformation of SRR with different stretch

ratios, COMSOL Multiphysics was employed to simulate the deformation, and then the

structural information was imported into HFSS for the EM simulation, by applying the

periodical boundary condition for the SRR unit cell. The simulation results with different

stretch ratios are illustrated in Figure. 5.2(b) with solid lines. The simulated results and the

experimental results achieved a good agreement in the trend of shifting resonance frequency

with different stretch ratios. The minor differences of the dip positions and the bandwidth

can be attributed to some possible aspects, such as the real loss from the meta-skin device,

accuracy of the real deformation mode, human operation, and temperature change from the

laboratory environment.
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Figure 5.2 (a) Schematic of the multilayer meta-skins and measurement setup. (b)

Simulated and experimental transmittance spectra of the tunable multilayer

meta-skins (vertical spacing between neighboring layers: d = 3 mm) at differ-

ent stretching ratios. (c,d) Experimental transmittance spectra for d = 13 mm

(c) and d = 17 mm (d). The conductivity for the liquid metal is 3.47 × 106

S/m. The dielectric constant and loss tangent of Ecoflex are 2.5 and 0.01,

respectively.



www.manaraa.com

78

Figure 5.3 (a) Photo of multilayer meta-skins. Each layer consists of an array of liquid

metal based SRRs embedded in a highly stretchable elastomer. (b) Flexibility

demonstration by wrapping a wrist with a single layer meta-skin.

5.3 Cloaking Effects

The fully flexible nature of the meta-skin makes it possible to wrap on an object with

arbitrary shapes (Figure 5.3(b)). To investigate the EM property of the meta-skin coated

on the arbitrary shape object, we used a single layer of meta-skin to wrap on a 30 cm

long, 3 cm diameter dielectric nylon rod with dielectric constant of 3.8, which is shown in

Figure 5.4(b)). We investigated how this wrapping material could influence the scattered

field from the rod. The far-field measurement was thus conducted to measure scattering

strength from a bare nylon rod, a nylon rod wrapped by a pure Ecoflex sheet, and a nylon

rod wrapped by the meta-skin.

In the measurement setup (Figure 5.4(a)), the sample hangs from a cotton thread at to

minimize unwanted scattering signals from the support constructs. The two horn antennas

are placed at an equal distance of L = 80cm from the sample. This ensures that the object
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is in the far-field region (according to the far-field condition 2D2/λ, where D = 9.8 cm

is the diagonal of the horn antenna and λ = 3 cm is estimated from the center operating

frequency). The transmitter antenna is fixed at θ = 0 during the measurement, while the

receiver antenna is moved around the sample with a fixed distance to receive scattering

signals from different angles θ. The two horn antennas are inserted into the absorbing

material to minimize the scattering from the background. The aforementioned VNA is

used to measure scattering parameters from the object. The objective azimuthal bi-static

measurements were conducted to obtain the s-parameter for further data analysis.

5.3.1 Device Setup and Measurement

Figure 5.4 (a) Schematic for measurement of cloaking profile. (b) A photo of a dielectric

nylon rod wrapped by the meta-skin. The dielectric constant of the rod is 3.8.

The diameter and the length of the rod are 3 cm and 25 cm respectively.

5.3.2 Data Processing and Analysis

The way to obtain the scattered field was by subtracting the incidence field (S21i) from

the total field (S21t). In this manner, not only the scattering field from the sample can be

derived theoretically, but also clutters from background can be minimized in some extend.

To realize this, two consecutive measurements were conducted. First, the sample was placed

at the designated position and S21t was measured. Then, the sample was removed and S21i
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was recorded. Correspondingly, the raw s-parameter of the scattered field can be expressed

as

S21o = S21t − S21i (5.1a)

S21(ωk),S21o (5.1b)

where ωk represents the sampling frequency. This method can be applied to obtain the

scattering field from the uncoated rod, poly-coated rod, and SRR-coated rod. Limited by

the laboratory environment, this set of measurements were not operated in the anechoic

chamber. The non-anechoic environment made the objective signal mixed with background

clutter. Although scattering field derived from subtraction can avoid some clutter scattering

from the background, it is still hard to entirely remove the clutters due to the complicated

environment, and time variant human operations.

The spectra responses of S21(ωk) are shown through Figure 5.5(a) with blue solid line.

Obviously, the raw data contain many complex stray signal. In order to obtain the target

signal without these clutters efficiently and accurately, discrete Fourier transform (DFT) is

employed for the post processing.

Figure 5.5 (a) Raw data and processed data. (b) The gate function in time domain.
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Instead of directly implementing the DFT on S21(ωk), a Gaussian window function

(G(ωk)) is multiplied with S21(ωk) to select the target signal, due to its better resolution

in the time domain. A new signal in frequency domain was generated, denoted as H(ωk).

To clearly reveal the signal responses in the time domain, an inverse DFT (IDFT) is im-

plemented over H(ωk) and generates h(tn) , where tn represents discrete sampling point in

time domain. This IDFT can reveal the signal response in the time domain. As shown in

Figure 5.5(b) with solid blue line, the signals from clutters were late arrived compared with

signal from the sample object. To remove the interaction with background from h(tn), a

designated rectangular window function (w(tn)) is employed to remove those early or late

arrived signals as shown in Figure 5.6(b) with red solid line. Finally, the DFT was im-

plemented over this processed time domain signal (w(tn)h(tn)), and yielding S′(ωk)G(ωk),

where S′(ωk) solely represents the interaction with the sample in the frequency domain.

This entire process can be expressed as

H(ωk) = G(ωk) · S(ωk) (5.2)

h(tn) =
1

N

N−1∑
k=0

H(ωk)e
−jωktn (5.3)

S′(ωk) =

∑N−1
k=0 w(tn)h(tn)ejωktn

G(ωk)
(5.4)

where N is number of sampling points. By using Equations 5.2, 5.3, and 5.4, we obtained

the scattering field for the aforementioned three different samples. An example with the

observation angle of 105◦ is shown in Figure 5.6, where the red solid lines, as shown in

Figure 5.6(a)-(c), represent the processed scattering field for different samples. Compared

to S(ωk), S
′(ωk) becomes smooth after the removal of the clutters from S(ωk).

The post-processed scattering gains for the meta-skin covered, the polymer covered,

and the uncovered rods are presented in Figure 5.7(a)-(e). The results show that the

scattering gain from the meta-skin covered rod is significantly reduced in the frequency

band from 8-10 GHz at five different measurement angles θ = 37.5◦, 45◦, 60◦, 90◦, and 105◦.

Specifically, compared with the uncovered case, at θ = 37.5◦ the meta-skin was able to
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suppress the scattering gain in over 33% of frequency band between 8-10 GHz. At other

angles the suppression effect of the meta-skin is more significant and the scattering grain

was suppressed in over 70% of the same frequency range. The largest suppression of 20

dB was found at around 9 GHz at θ = 37.5◦. The overall scattering suppression effect of

the meta-skin is illustrated by averaging the scattering gain with different angles (Figure

5.7(f)). It is observed that the meta-skin was able to suppress the scattering gain by about

75% in the band of 8-10 GHz. The scattering suppression is mainly attributed to the

cloaking effect of the embedded SRRs around the designed frequency, where the destructive

interference between the resonance of the SRRs and the scattering from the dielectric rod

occurred. We also noted that the scattering gain spectra of the meta-skin wrap in Figure

5.7 do not have the exactly same resonance frequency as the transmittance spectra of the

multilayer meta-skins under the unstretched state in Figure 5.2(b). The factors below

may be attributed to this observation: first, the scattering suppression gain was measured

at different angles, which actually is angle-dependent due to different phases of multiple

reflections and interactions over the interfaces; second, only one layer of the meta-skin was

coated on the surface of the nylon rod with the dielectric constant of 3.8, while multiple

layers of the meta-skins were used in the frequency selective surface application and spaced

by foam with the dielectric constant of close to one.

The whole meta-skin remained fully functional without fatigue or cracking after repeated

measurements. This is because the liquid metal SRRs can flow and reshape responding to

applied strains. Besides the single circular SRR, many other magnetic resonance struc-

tures may be used in the meta-skin setting to realize frequency selection and scattering

suppression. Furthermore, in addition to the magnetic resonators, liquid metal-based elec-

tric resonant structures, such as wires, can be integrated into the same elastomer. This

will make it possible to achieve negative index for cloaking applications. Moreover, other

different stretchable and flexible dielectric host media could be used to embed these liq-

uid metal-based resonant structures. This will provide us with more flexibility to control
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loss tangent of the meta-skin. In the microwave frequency regime the dielectric losses are

dominant and different substrate dielectric materials can affect the loss tangent. For higher

frequencies, such as terahertz, as the ohmic losses become significant, other types of liquid

metal or conducting materials are required to form the resonating units.

Figure 5.6 (a)-(c) raw data and processed data for uncoated, poly-coated, and SRR-coated

cases respectively. The observation angle is θ = 105◦. (d) Processed data for

three different cases.
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Figure 5.7 Measured scattering gain for the bare dielectric rod (green dash), the rod

wrapped with the pure Ecoflex polymer (red circle), and the rod wrapped

with the single layer metal-skin (blue solid) at different angles. (a) θ = 37.5◦,

(b) θ =45◦, (c) θ =60◦, (d) θ =90◦, and (e) θ =105◦. (f) The average scattering

gain over different angles.
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5.4 Conclusions

A stretchable and wearable microwave meta-skin was developed by embedding an array

of liquid metal SRRs into a highly stretchable elastomer. We demonstrated the strong ability

of the meta-skin to tune the resonance of the frequency selective surface and to suppress

the scattering from the curved surface of a dielectric material along different directions.

By combining the planar stretching and the vertical spacing, the resonance frequency of

the multilayer meta-skins was tuned from 9.15-12.38 GHz. By wrapping a finite-length

dielectric rod with the meta-skin, the scattering from the surface of the rod was suppressed

by about 75% in 8-10 GHz. It is believed that the present meta-skin technology will find

many applications in EM frequency tuning, shielding, and scattering suppression.
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CHAPTER 6. DIRECTIVITY-RECONFIGURABLE WIDEBAND

TWO-ARM SPIRAL ANTENNA

In this chapter, we present a novel directivity-reconfigurable wideband antenna in mi-

crowave regime. The directivity-reconfigurable feature is realized, again, by virtue of the

special property from the liquid metal alloy and highly stretchable elastomer. A two-arm

Archimedean spiral antenna is adopted to implement the concept of optimizing directivity

by inflating the elastomer to form a dome-shaped antenna. Micro-electro-mechanical sys-

tems based microblowers are employed to pneumatically control the shape of the antenna.

Due to the wide frequency band property of the spiral antenna, it can be operated from

6.9 GHz to 13.8 GHz. The ability to change the shape of the antenna allows optimizing its

radiation pattern by making it become more directive along the main lobe direction or in

the inflation direction. Due to the formation of the dome-shaped structure, the radiation

pattern of the antenna becomes shaper, thus optimizing its directivity, while its passing

band remains wide.

6.1 Design and Fabrication

Figure 6.1(a) shows schematic for a planar self-complementary, two-arm Archimedean

spiral antenna made of liquid metal encased by a stretchable silicone elastomer. The op-

erating frequency range of the antenna can be determined by the innermost radius a and

the outermost radius b. In order to operate in X-band regime, the antenna is designed to

have a = 3.5 mm and b = 18.5 mm. Each spiral arm has 2.5 turns. The width of the liquid

metal is w = 1.5 mm and the gap between two arms is g = 1.5 mm. The fabricated device

before equipped for testing is shown in Figure 6.1(b).
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The fabrication process for the antenna is demonstrated in Figure 6.1(c) and was con-

tributed by the collaborator Dr. Peng Liu. For the completeness of the work, the fabrication

process will be briefly introduced here, but not in detail. First, a SU-8 photoresist (Mi-

crochem, Westborough, MA) is patterned with the designed spirals on a silicon wafer W1.

Subsequently, a 700 µm thick silicone layer L1 is formed by casting a prepolymer solution

of silicone Ecoflex (Smooth-On, Macungie, PA) on the SU-8 mold, followed by a thermal

curing process at 60◦C on a hotplate for 30 min. The fully cured L1 layer is then peeled from

the SU-8 mold with the spiral channels inside it. To inject the liquid metal alloy EGaIn into

the channels, an inlet and an outlet are mechanically punched at the two ends of each chan-

nel. Due to the natural poor adhesion between fully cured Ecoflex, a 100 µm thick Ecoflex

layer L2 is partially cured on a silanized bare Si wafer W2 at 45◦C for 40 sec. After that,

the fully cured L1 and the partially cured L2 are immediately transferred to a hotplate at

90◦C for 20 min. This allows permanently bonding the two layers. Thus, the spiral channels

are formed inside the elastomer. After EGaIn is manually injected into the channels with

a metal needle (#20 Gauge) amounted on a syringe (10 mL; Becton-Dickinson, Franklin

Lakes, NJ), the residues of liquid metal left around the inlets and outlets are cleaned by

a cotton swab dipped with a hydrochloric acid solution (50%, v/v). Lastly, the device is

immersed into a thin prepolymer solution of Ecoflex and then is fully cured at 80◦C for 30

min to seal the inlets and outlets. The total thickness of the elastomer is approximately 1

mm. The liquid metal is located in nearly half the thickness of the elastomer Figure 6.1(b),

(c).
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Figure 6.1 (a) Design parameters of the proposed two-arm spiral antenna. (b) Photo of

the fabricated planar antenna before assembled to a pneumatic control unit.

(c) Schematic of the fabrication process for the planar antenna. (d) Photo of

the assembled directivity reconfigurable antenna with a pneumatic air control

unit or four voltage-controlled MEMS microblowers. (e) Measured relationship

between the inflation height H and the actuation D.C. voltage applied to the

microblowers. The error bars represent standard deviations obtained via 100

times repeatability measurements.
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In order to deform the liquid metal antenna and control its deformation, an inexpensive

and accurate control unit is built with MEMS microblowers (MZB1001E00; Murata, Kyoto,

Japan). Briefly, the microblower utilizes a piezoelectric based drive method that features

small dimensions and is suitable as a source for high-pressure air generation with compact

and low profile. To provide a high pressure to deform the antenna, four microblowers are

connected in parallel with tubing and three way hose fittings (Figure 6.1(d)). Subsequently,

the planar antenna is sandwiched between two 3 mm thick acrylic boards (Total Plastic,

Baltimore, MD) and fixed by four nylon mechanical cap screws. The lower acrylic board is

pre-machined to form a 1 mm deep cavity and two lateral air vents. A circular through hole

with the diameter of 50 mm is created in the upper cladding board. When a D.C. voltage is

applied to the microblowers, the microblowers generate high-speed airflow to pneumatically

push the elastomer into a dome-like cap.

6.2 Measurement with Different Configurations

First, the relationship between the applied actuation D.C. voltage to the microblowers

and the resulting height H is investigated. As shown in Figure 6.1(e), H increases almost

linearly with an applied voltage at low voltage regions (0-10 V) and then increases slightly

slowly at high voltage regions (11-21 V). At the maximum allowed voltage of 21 V for the

microblowers, the obtained dome height is 21.8 mm. The shape change repeatability of the

antenna is investigated by inflating and deflating the antenna for 100 times. The obtained

standard deviation of inflation height is less than 1.5%, indicating a good repeatability and

reliability of this actuation method. During the repeatability test, the liquid metal inside

the spiral channels dynamically responds to the applied pressures by changing its shape

and dimensions. No fatigue or cracking is found with the liquid metal or Ecoflex after the

repeatability measurements. It takes about 6.5 seconds for the microblowers to inflate the

planar antenna from flat to the maximum dome height of 21.8 mm at 21 V. By increasing



www.manaraa.com

90

the number of the microblowers or exploring other actuation mechanisms, the actuation

time of the device can be reduced.

Figure 6.2 Time-lapse images (a-d) and FEA simulation results (e-h) for the Ecoflex elas-

tomer containing the liquid metal antenna with different inflation heights: 0

(a, e), 7 mm (b, f), 14 mm (c, g), and 21.8 mm (d, h). Scale bars in (a-d)

represent 3 mm

Figure 6.2 shows the mechanical simulation for four instances of the antenna under

different actuation voltages applied to the microblowers. The simulation is performed using

finite element analysis (FEA) method based software (COMSOL). The Young’s modulus

and Poissons ratio of Ecoflex are 29.5 kPa and 0.43, respectively. The pressure values for the

simulation are obtained by using a pressure sensor (SPD015AA; Smartec, The Netherlands).

As the Ecoflex membrane is inflated, mechanical restoring force of the elastomer acts to

balance with the increased internal air pressure, thus obtaining an equilibrium shape at

a certain height of the dome. For H = 0, 7 mm, 14 mm, and 21 mm under the applied

pressure of 0, 2.2 kPa, 5.2 kPa, and 11.8 kPa, the resulting maximum surface stress in the
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deformed Ecoflex membrane is found to be 0, 184 kN/m2, 491 kN/m2, and 915 kN/m2,

respectively.

As the antenna is made and its deformation is well controlled by the MEMS microblow-

ers, we can start conducting the electromagnetic (EM) measurement. This EM measure-

ment is carried out in an anechoic chamber. The reconfigurable antenna is treated as the

receiving antenna, and it is placed on a positioner via a self designed support, which was

used for fix the antenna. This positioner is connected to the DAM measurement system

(Diamond Engineering, Diamond Springs, CA) . From the PC terminal we can manipulate

the DAM system, and further control the positioner to drive the antenna to rotate in both

θ, and ϕ directions.

To receive signal properly, the antenna is fed by a 3 mm SMA coaxial connector at

the two heads of the spiral arms in the center region. The central pin and the ground pin

of the connector are directly in contact with the liquid metal by inserting the two pins

into the channels. A drop of Ecoflex precursor solution is added and then polymerized to

seal the holes formed during the insertion Figure 6.3. Then a coaxial cable was used to

connected the antenna to one port of the programmable vector network analyzer (VNA,

Agilent E8364).

On the other hand, a horn antenna, which is working at X-band, is connected to another

port of VNA, and it is treated as the transmitting antenna. These two antennas were placed

with a distance of 1.2 m, which ensured that the receiving antenna was in the far-field region

(according to the far-field condition 2D2/λ, where D = 9.8 cm is the diagonal of the horn

antenna, and λ = 3 cm is estimated from the center operating frequency).

The received RF signal will be sent back to the VNA and the power (for every position

of the receiving antenna) is measured there. All the measured data are sent to the PC ter-

minal, where DAM software will provide instantaneously visualization and post-processing

functions. The schematic for the measuring system is shown in Figure 6.4.
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Figure 6.3 Photo of the liquid metal antenna with a feeding structure.

Figure 6.4 The setup for the antenna measurement system, where TX in the figure repre-

sents transmitting and RX represents receiving antennas
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The reflection coefficients as a function of frequency for different dome heights are mea-

sured and plotted in Figure 6.5. The result shows that as the antenna is inflated, the passing

band for the antenna remains in a wide frequency range from 6.9 GHz to 13.2 GHz with

S11 lower than -10 dB.

Figure 6.5 Measured reflection coefficient for different inflation heights of the antenna.

The radiation pattern of the designed antenna is measured with a horn antenna in the

far field region as shown in Figure 6.6. The designed antenna sits on a turntable rotating

around the vertical z axis and the dashed line extending from the horn antenna is in x− y

plane. The rotation angle ϕ is defined as the angle between the horn antenna (dashed

line) and x axis. When ϕ = 90◦, the inflated dome of the antenna point towards the horn

antenna. At each sampling angle, 21 measurements are performed to minimize the influence

of possible mechanical errors.



www.manaraa.com

94

Figure 6.6 Measurement setup for measuring the radiation pattern of the liquid metal

antenna with horizontal polarization.

Figure 6.7 shows the radiation patterns of the antenna with horizontal polarization at

8.5 GHz for three different inflation heights: 0, 10.9 mm, and 21.8 mm. The result indicates

that the signal strength exhibits the strongest along the y axis (here, y direction at 90◦ and

−y direction at 270◦). The flat liquid metal antenna transmits almost same signal strength

for both y and −y directions, because of the geometrical symmetry at x − z plane along

y axis. As the inflation height increases, the liquid metal antenna tends to increase the

radiation along y direction (90◦), while decreasing the radiation along −y direction (270◦).

Further increasing the inflation height will further enhance the radiation along y direction.

Therefore, the directivity at the main lobe direction (y direction) can be optimized by

inflating the antenna to higher heights.

The radiation patterns of the antenna at different frequencies are also measured in the

frequency range from 7.6 GHz to 9.8 GHz with the reflection power lower than -20 dB.

Figures 6.8-6.11 show the normalized radiation patterns of the designed antenna with three

inflation heights (0, 10.9 mm and 21.8 mm) at two sampling frequencies (8.5 GHz and 9.5

GHz). By rotating the receiving horn antenna by 90◦, the radiation patterns of vertical

polarization are also measured.
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Figure 6.7 Measured radiation pattern at 8.5 GHz of horizontal polarization for three

inflation heights.

Figure 6.8 Measured radiation pattern at 8.5 GHz of horizontal polarization for three

inflation heights from 0◦ to 180◦.
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Figure 6.9 Measured radiation pattern at 8.5 GHz of vertical polarization for three infla-

tion heights from 0◦ to 180◦.

Figure 6.10 Measured radiation pattern at 9.5 GHz of horizontal polarization for three

inflation heights from 0◦ to 180◦.
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Figure 6.11 Measured radiation pattern at 9.5 GHz of vertical polarization for three infla-

tion heights from 0◦ to 180◦.

6.3 Analysis and Discussions

As mentioned above, the directivity of the antenna can be improved only in the inflation

direction of the dome. Consequently, the radiation patterns of the antenna are measured

only from 0◦ to 180◦ along the main lobe direction or the inflation direction (90◦ in the

radiation pattern plots). The measured radiation patterns show good directivity for all the

measured heights at 8.5 GHz and 9.5 GHz. With the measured radiation pattern, we can

evaluate the directivity of this antenna beginning from its definition [114]

D(θ, ϕ) =
U(θ, ϕ)

Uave
(6.1)

In Equation (6.1) U(θ, ϕ) is the radiation intensity. It can be written as U(θ, ϕ) = Um|F (θ, ϕ)|2,

where Um is the maximum radiation intensity in direction (θmax, ϕmax), and F (θ, ϕ) =

|E(θ, ϕ)|/max|E| is the radiation pattern. Uave is defined as
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Uave =

∫∫
U(θ, ϕ)dΩ

4π
(6.2)

and dΩ = sin θdθdϕ. Further the directivity can be written as

D(θ, ϕ) =
4πU(θ, ϕ)∫∫
U(θ, ϕ)dΩ

(6.3)

and the radiation pattern is

F (θ, ϕ) =

√
|Eθ(θ, ϕ)|2 + |Eϕ(θ, ϕ)|2

E0
(6.4)

Thus, the maximum directivity is

D0 =
4πUm∫∫
U(θ, ϕ)dΩ

=
4π∫∫

|F (θ, ϕ)|2dΩ
(6.5)

The field radiation pattern shown in Equation (6.4) is the same as measured S21. By

assuming F (θ, ϕ) is axisymmetric we have

D0 =
2∫ π

0 |F (θ)|2 sin θdθ
(6.6)

The directivity of the antenna at different frequencies and heights are shown in Table 6.1

Correspondingly, the efficiency of the antenna can be evaluated by using

εr =
Gr
D0

(6.7)

where Gr is the gain of the designed antenna, this quantity can be derived by using the

Friis transmission formula [114]

Pr = Pt
(
1− |S11|2

) (
1− |S22|2

) GtGrλ2
(4πR)2

(6.8)

where Pr and Pt are receiving and transmitting power, Gt = 25 dB is the gain of the horn

antenna, R = 1 m is the distance between two antennas, power ratio Pr/Pt = |S21θ|2 +

|S21ϕ|2, and

εr =
(4πR)2Pr

GtPtD0λ2 (1− |S11|2) (1− |S22|2)
(6.9)
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Table 6.1 directivity and efficiency

Frequency
Dome Height

0 mm 10.9 mm 21.8 mm

Directivity
8.5 GHz 5.39 dB 7.24 dB 7.74 dB

9.5 GHz 7.75 dB 8.92 dB 9.90 dB

Efficiency
8.5 GHz 54.2% 46.4% 72%

9.5 GHz 40% 45.1% 60.5%

D0 can be evaluated from Equation 6.6, and the efficiency with different antenna heights

are demonstrated in Table 6.1. The efficiency of the antenna varies between 40% and 72%

for different inflation heights and frequencies.

More importantly, with increasing the inflation height, the antenna exhibits stronger

directivity along its main lobe direction, thus optimizing its directivity along the inflation

direction. Specifically, at 8.5 GHz, by inflating the antenna from 0 to 10.9 mm and further

to 21.8 mm, the signal strength is improved by 2 dB and further to 3 dB in the horizontal

polarization direction, and by 1 dB and further to 3 dB in the vertical polarization direction.

Similarly, at 9.5 GHz, the signal strength in the inflation direction is also enhanced by

3 dB and 6 dB, for the horizontal and vertical polarization, respectively. It should be

pointed out that as the radiation pattern shows a good similarity between the vertical and

horizontal polarizations, the antenna provides relatively good circular polarization. This

can be confirmed from the value of axial ratio, which is defined as the ratio between the

major and minor axis of the elliptical polarization (for circular polarization axial ratio equal

to one). By using the radiation patterns of two orthogonal polarizations, we can calculate

the axial ratios at different frequencies and inflation heights, which are shown in Table 6.2.

Table 6.2 Axial ratio for different inflation heights and frequencies

0 mm 10.9 mm 21.8 mm

8.5 GHz 1.25 1.54 1.32

9.5 GHz 1.58 1.10 1.08
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Furthermore, benefiting from the deformability of the liquid metal and elastomer, the

present antenna is able to preserve its electromagnetic properties after being inflated for 500

times to the maximum height of 21.8 mm. Theoretically, the directivity of the device can

be further enhanced by adding a back reflector or cavity. However, it is difficult to maintain

the gap distance unchanged between the antenna and the reflector during the mechanical

deformation of the antenna. We will optimize the device and introduce a cavity to the

design in the future. Nevertheless, the demonstrated reconfigurability of the present device

allows for continuous tuning the radiation pattern and directivity of the antenna. Lastly,

to obtain the full benefit of structural tuning, the device needs to operate at temperatures

that keep the infused liquid metal in a liquid state. EGaIn used in this study has a melting

point of ∼ 15.5◦ C, making it liquid at room temperature. It should be pointed out that

when lower operation temperatures are needed, the device requires using other liquid metals

or alloys with lower melting points.

6.4 Conclusions

A liquid metal based antenna with a wide frequency band has been developed and its

capability to optimize directivity has been demonstrated. The antenna is formed by encasing

EGaIn into Ecoflex elastomer and can withstand a large deformation with a good reliability

and repeatability. This allows inflating the antenna containing elastomer to form a dome-

like structure with different heights, by pneumatically pumping high-pressure air into an air

cavity using MEMS microblowers. By increasing the inflation height, the signal strength

of the antenna can be improved to different extents. The antenna retains its wideband

character without being affected by the pneumatic inflation. With an improved directivity

in a broad operating frequency range, the antenna can radiate more energy towards the

receiver. It is believed that the antenna can find its applications where targeted wireless

power transfer, high directivity, circular polarization, and wide operating frequency band

are needed.
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CHAPTER 7. CONCLUSION

In this thesis we mainly investigate two topics. The first one is guided and leaky modes

for the dielectric rod and the second one is tunable metamaterials and applications.

In the first part of this thesis, we start our investigation from the field distribution

outside the dielectric rod and define the modes to be solved. Through the analysis of

different special functions and Riemann sheets, the relationships of these mode solutions

are concluded. Further, the complete forms of characteristic equations to solve proper and

two types of improper modes are presented explicitly.

In the process of solving these non-linear equations with iterative methods, we provide

relatively accurate initial guesses to accelerate the convergence in finding the mode solutions.

By asymptotically expanding the special functions and employing the Lambert W function,

a set of initial guess expressions are derived. Around cutoff frequency, Lambert W functions

at different branches are employed to find the initial guesses for the proper modes, outgoing

improper modes, and incoming improper modes stopping at the cutoff frequency. At the

low frequency limit, we predict the whole set of outgoing improper modes and incoming

improper modes stopping at DC. Also, the initial guesses for the whole set of proper and

incoming improper modes from the high frequency limit are also derived. Further, we have

made the initial guesses applicable for both TM and TE cases by carefully testing different

values of κ. Finally, the complex transverse propagation constants of proper and two types

of improper modes are demonstrated numerically.

The procedure in solving modes for the DPS rod is further applied to solve the DNG

rod by using the same mode definitions.The characteristic equation for the DNG case is

first derived and then the initial guesses for different modes around the cutoff frequency,

high frequency limit and low frequency limit are expressed by expanding the characteristic



www.manaraa.com

102

equations. Finally, these initial guesses are used to solve the characteristic equations with

an iterative method and the numerical results are illustrated.

In the second part of the thesis, we introduce the conventional metamaterials and pointe

out its drawback of fixed and limited bandwidth. Correspondingly we present a new type

of tunable meta-atom in the X-band frequency range toward reconfigurable metamaterials.

This SRR-based meta-atom is made of all flexible materials compliant to the surface of

an interaction object. It uses a liquid metal-based SRR as its core constituent embedded in

a highly flexible elastomer. We demonstrate that simple mechanical stretching of the meta-

atom can lead to the great flexibility in re-configuring its resonance frequency continuously

over more than 70% of the X-band frequency range.

Then, we extende the idea of meta-atom to meta-skin, which is developed by embedding

an array of liquid metal SRRs into a highly stretchable elastomer. We demonstrate the

strong ability of the meta-skin in tuning the resonance frequency as frequency selective

surface and to suppress the scattering from the curved surface of a dielectric material along

different directions as a flexible “cloaking” surface.

In the last part of the thesis, utilizing the flexible and stretchable properties of liquid

metal and elastomer, we develope a novel directivity-reconfigurable two-arm spiral antenna

which can be operated from 6.9 GHz to 13.8 GHz. A two-arm Archimedean spiral antenna

is adopted to implement the concept of optimizing directivity by inflating the elastomer

to form a dome-shaped antenna. The ability to change the shape of the antenna via the

Micro-electro-mechanical systems allows optimizing its radiation pattern by making it more

directive in the inflation direction, while its frequency band remains wide.
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